Skip to main content
Log in

Effect of starvation and insulin-induced hypoglycemia on oxidative stress scavenger system and electron transport chain complexes from rat brain, liver, and kidney

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Considerable evidence suggests that oxidative stress plays an important role in tissue damage associated with hypoglycemia and other metabolic disorders. The altered brain neurotransmitters metabolism, cerebral electrolyte contents, and impaired blood-brain barrier function may contribute to CNS dysfunction in hypoglycemia. The present study elucidates the effect of starvation and insulin-induced hypoglycemia on the free radical scavanger system—reduced glutathione (GSH) content, glutathioneS-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamyl transpeptidase (γ-GTP), γ-glutamyl cystein synthetase (γ-GCS), catalase and superoxide dismutase (SOD), and mitochondrial electron transport chain (ETC) complexes I–IV from three different regions of rat brain, namely cerebral hemispheres (CH), cerebellum (CB), and brainstem (BS). Peripheral organs, such as liver and kidney, were also studied. Significant changes in these enzymic activities were observed. The analysis of such alterations is important in ultimately determining the basis of neuronal dysfunction during metabolic stress conditions, such as hypoglycemia, and also defining the nature of these changes may help to develop therapeutic means to cure metabolically stressed tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H. (1984) Catalase in vitro.Methods Enzymol. 103, 121–126.

    Google Scholar 

  • Agardh C. D., Kalimo H., Olesson Y., and Siesjö B. K. (1981) Hypoglycemic brain injury, metabolic and structural findings in rat cerebellar cortex during profound insulin induced hypoglycemia and the recovery period following glucose administration.J. Cereb. Blood Flow. Metab. 1, 71–84.

    PubMed  CAS  Google Scholar 

  • Almeida A., Brooks K. J., Sammut I., Keelan J., Davey G. P., Clark J. B., et al. (1995) Postnatal development of complexes of the electron transport chain in synaptic mitochondria from rat brain.Dev. Neurosci. 17, 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Auer R. N. and Siesjö B. K. (1988) Biological differences between ischemia, hypoglycemia and epilepsy.Ann. Neurol. 24, 699–707.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?.Ann. Neurol. 31, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F., Hyman B. T., and Koroshetz W. (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?.Trends Neurosci. 16, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I. and Mannervik A. (1975) Purification and characterization of flavoenzyme glutathione reductase from rat liver.J. Biol. Chem. 250, 5475–5480.

    PubMed  CAS  Google Scholar 

  • Chapman A. G., Westerberg E., and Siesjö B. K. (1981) The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin induced hypoglycemia and recovery.J. Neurochem. 36, 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T. and Puttfarcken P. (1993) Oxidative stress, glutamate and neurodegenerative disorders.Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Flohe I. and Gunzler W. A. (1984) Assay of glutathione peroxidase.Methods Enzymol. 105, 114–121.

    PubMed  CAS  Google Scholar 

  • Ghajar J. B. G., Plum F., and Duffy T. E. (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetised rat.J. Neurochem. 38, 397–409.

    Article  PubMed  CAS  Google Scholar 

  • Goto Y., Nomaka I., and Horai S. (1990) A mutation in tRNA (Leu)(UVR) gene associated with the MELAS subgroup of mitochondrial encephalopathies.Nature 348, 651–653.

    Article  PubMed  CAS  Google Scholar 

  • Griffith O. W. and Meister A. (1985) Origin and turnover of mitochondrial glutathione.Proc. Natl. Acad. Sci. USA 82, 4666–4672.

    Google Scholar 

  • Habig W. H., Pabst M. J., and Jakoby W. B. (1974) Glutathione S Transferase: The first enzymatic step in mercapturic acid formation.J. Biol. Chem. 249, 7130–7139.

    PubMed  CAS  Google Scholar 

  • Hatefi Y. and Rieske J. S. (1967) Preparation and properties of DPNH Coenzyme Q Reductase (complex-I of the respiratory chain).Methods Enzymol. 10, 235–239.

    CAS  Google Scholar 

  • Hourani H., Lacy B., Eltayeb K., and Abumrad N. N. (1992) The role of the central nervous system in modulating glucose and protein metabolism during insulin induced hypoglycemia.Brain Res. 587, 276–284.

    Article  PubMed  CAS  Google Scholar 

  • Jain A., Martensson J., Stole E., Auld P. A. M., and Meister A. (1991) Glutathione deficiency leads to mitochondrial damage in brain.Proc. Natl. Acad. Sci. USA 88, 1913–1917.

    Article  PubMed  CAS  Google Scholar 

  • Kalimo H., Auer R. N., and Siesjö B. K. (1985) The temporal evolution of hypoglycemic brain damage III. Light and electron microscopic findings in the rat caudoputamen.Acta Neuropathol. 67, 37–50.

    Article  PubMed  CAS  Google Scholar 

  • Kono Y. (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay of superoxide dismutase.Arch. Biochem. Biophy.,186, 189–195.

    Article  CAS  Google Scholar 

  • Krishnamoorthy G. and Hinkle P. C. (1988) Studies on the electron transfer pathway, topography of iron-sulfur centers and site of coupling in NADH-Q oxidoreductase.J. Biol. Chem. 263, 17,566–17,575.

    CAS  Google Scholar 

  • Kumar J. S. S. and Menon V. P. (1993) Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain.Metabolism 42, 1435–1439.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Makar T. K., Nedergaard M., Preuss A., Gelbard A. S., Perumal A. S., and Cooper A. J. L. (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide and enzymes of glutathione metabolism in cultures of chick estrocytes and neurons: Evidence that astrocytes play an important role in antioxidant processes in brain.J. Neurochem. 62, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Meister A. (1983) Selective modification of glutathione metabolism.Science 220, 472–477.

    Article  PubMed  CAS  Google Scholar 

  • Naftalin L., Sexton M., Whitaker J. F., and Tracey D. (1969) A routine procedure for estimating serum γ-glutamyl transpeptidase activity.Clin. Chim. Acta 26, 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Parker W. D., Jr., Boyson S. J., and Parks J. K. (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease.Ann. Neurol. 26, 719–723.

    Article  PubMed  Google Scholar 

  • Parker W. D. Jr. and Parks J. K. (1995) Cytochrome C oxidase in Alzheimer’s disease brain: purification and characterization.Neurology 45, 482–486.

    PubMed  Google Scholar 

  • Partridge R. S., Monroe S. M., Parks J. K., Johnson K., Parker W. D. Jr. Eaton G. R., et al. (1994) Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles.Arch. Biochem. Biophys. 310, 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Rieske J. S. (1967) Preparation and properties of reduced Coenzyme Q Cytochrome C Reductase (complex-III of respiratory chain).Methods Enzymol. 10, 239–245.

    CAS  Google Scholar 

  • Sedlak J. and Lindsay R. H. (1968) Estimation of total, protein bound and nonprotein sulfhydryl groups in tissues with Ellman’s reagent.Anal. Biochem. 25, 192–205.

    Article  PubMed  CAS  Google Scholar 

  • Salo D. C., Pacifici R. E., Lin S. W., Giulivi C., and Davies K. J. (1990) Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation.J. Biol. Chem. 265, 11,919–11,927.

    CAS  Google Scholar 

  • Santos M. S., Moreno A. J., and Carvalho A. P. (1996) Relationships between ATP depletion, membrane potential and the release of neurotransmitters in rat nerve terminals. An in vitro study under condition that mimic anoxia, hypoglycemia, and ischemia.Stroke 27, 941–950.

    PubMed  CAS  Google Scholar 

  • Seelig G. F. and Meister A. (1985) Glutathione biosynthesis: γ-glutamyl cysteine synthetase from rat kidney.Methods Enzymol. 113, 379–390.

    PubMed  CAS  Google Scholar 

  • Siesjö B. K. (1981) Cell damage in the brain: a speculative synthesis.J. Cereb. Blood Flow. Metab. 1, 155–185.

    PubMed  Google Scholar 

  • Siesjö B. K. (1988) Mechanisms of ischemic brain damage.Crit. Care Med. 16, 954–963.

    Article  PubMed  Google Scholar 

  • Siesjö B. K. and Bengtsson F. (1989) Calcium fluxes, calcium, antagonists, and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression: a unifying hypothesis.J. Cereb. Blood Flow. Metab. 9, 127–140.

    PubMed  Google Scholar 

  • Smith M. L., Von Hanwehr R., and Siesjö B. K. (1986) Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in hypoglycemic rats.J. Cereb. Blood Flow Metab. 6, 574–583.

    PubMed  CAS  Google Scholar 

  • Swerdlow R., Marcus D. L., Landman J, Kooby D, Frey W. 2nd, and Freedman M. L. (1994) Brain glucose metabolism in Alzheimer’s disease.Am. J. Med. Sci. 308, 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Turski L. and Turski W. A. (1993) Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology.Experentia 49, 1064–1072.

    Article  CAS  Google Scholar 

  • Wallace D. C., Zheng X. X., Lott M. T., Shoffner J. M., Hodge J. A., Kelley R. I., et al. (1988) Familial mitochondrial encephalomyopathy (MERRF) genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease.Cell 55, 601–610.

    Article  PubMed  CAS  Google Scholar 

  • Wieloch T., Harris R. J., Syman L., and Siesjö, B. K. (1984) Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy and phospholipid metabolism.J. Neurochem. 43, 160–168.

    Article  PubMed  CAS  Google Scholar 

  • Yonetani T. (1967) Cytochrome oxidase.Methods Enzymol. 10, 332–335.

    CAS  Google Scholar 

  • Ziegler D. and Rieske J. S. (1967) Preparation and properties of succinate dehydrogenase coenzyme Q reductase (complex-II).Methods Enzymol. 10, 231–235.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurcharan Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, S.K., Sharma, M.L., Gulati, G. et al. Effect of starvation and insulin-induced hypoglycemia on oxidative stress scavenger system and electron transport chain complexes from rat brain, liver, and kidney. Molecular and Chemical Neuropathology 34, 157–168 (1998). https://doi.org/10.1007/BF02815077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815077

Index Entries

Navigation