Skip to main content
Log in

Age-dependent effects oft-BuOOH on glutathione disulfide reductase, glutathione peroxidase, and malondialdehyde in the brain

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Intracerebroventriculart-butyl hydroperoxide has been reported to induce damage to many types of brain cells.t-Butyl hydroperoxide administration increases glutathione disulfide levels and decreases levels of glutathione. Young adult mice may be more protected fromt-butyl hydroperoxide than mature mice due to their higher glutathione levels, even after the adminstration oft-butyl hydroperoxide. This leads to our current study, investigating glutathione peroxidase and glutathione disulfide reductase in 2-mo-old and 8-mo-old mice. Furthermore, malondialdehyde levels were measured with the thiobarbituric acid assay and compared between the two age groups. Mature mice detoxify glutathione disulfide less readily than young adult mice. Glutathione disulfide reductase activity increases in young adult mice aftert-butyl hydroperoxide administration, but not in mature mice. Glutathione peroxidase activity is significantly lower in 8-mo-old than 2-mo-old mouse striatum aftert-butyl hydroperoxide administration. Furthermore, malondialdehyde levels in the 8-mo-old striatum increase significantly 20 min aftert-butyl hydroperoxide administration. This suggests that age plays a factor in protective mechanisms that are involved in oxidative stress in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acan N. L. and Tezcan E. F. (1991) Kinetic properties of sheep brain glutathione reductase.Enzyme 45, 121–124.

    PubMed  CAS  Google Scholar 

  • Adams J. D., Wang B., Klaidman L. K., Lebel C. P., Odunze I. N., and Shah D. (1993) New aspects of brain oxidative stress induced byt-BuOOH.Free Radical Biol. Med. 15, 195–202.

    Article  CAS  Google Scholar 

  • Adams J. D., Klaidman L. K., Huang Y. M., Cheng J. J., Wang Z. J., Nguyen M., Knusel B. and Kuda A. (1994) The neuropathology of intracerebroventriculart-butylhydroperoxide.Mol. Chem. Neuropathol. 22, 123–142.

    Article  PubMed  CAS  Google Scholar 

  • Adams J. D., Klaidman L. K. and Odunze I. N. (1989) Oxidative effects of MPTP in the midbrain.Res. Commun. Subst. Abuse 10, 169–180.

    CAS  Google Scholar 

  • Aust S. D. (1985) Lipid peroxidation, inCRC Handbook Methods For Oxygen Radical Research (Greenwald R. A., ed.), pp. 203–207, CRC, Boca Raton, FL.

    Google Scholar 

  • Bankova V. V., Simutenko L. V. and Barsegian G. G. (1987) Effect of stress experienced during pregnancy on the rate of lipid peroxidation in erythrocytes and brain tissue of newborn rat pups.Biulleten Eksperimentalnoi Biologii I Meditsing 104(7), 40–43.

    CAS  Google Scholar 

  • Barja de Quiroga G., Perez-Campo R. and Lopez-Torres M. (1990) Antioxidant defenses and peroxidation in liver and brain of aged rats.Biochem. J. 272, 247–250.

    PubMed  CAS  Google Scholar 

  • Brannan T. S., Maker H. S., Weiss C. and Cohen G. (1980) Regional distribution of glutathione peroxidase in the adult rat brain.J. Neurochem. 35, 1013–1014.

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I. and Mannervik B. (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver.J. Biol. Chem. 250, 5475–5480.

    PubMed  CAS  Google Scholar 

  • Carrillo M. C., Kanai S., Sato Y., and Kitani K. (1992) Age related changes in antioxidant enzyme activities are region and organ, as well as sex, selective in the rat.Mech. Ageing Dev. 65(2–3), 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Ciriolo M. R., Fiskin K., De Martino A., Corasanti M. T., Nistico G., and Rotilio G. (1991) Age-related changes in Cu, Zn, superoxide dismutase, Se-dependent and-independent glutathione peroxidase and catalase activities in specific areas of rat brain.Mech. Ageing Dev. 61, 287–297.

    Article  PubMed  CAS  Google Scholar 

  • Epe B., Hegler J. and Wild D. (1990) Identification of ultimate DNA damaging oxygen species.Environ. Health Perspect. 88, 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Alfonso C., Martinez-Galisteo E., Llobell A., Barcena A. J. and Lopez-Barea J. (1993) Regulation of horse-liver glutathione reductase.Int. J. Biochem. 25, 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence R. A., Parkhill L. K. and Burk R. F. (1977) Hepatic cytosolic non selenium dependent glutathione peroxidase activity: its nature and the effect of selenium deficiency.J. Nutr. 108, 981–987.

    Google Scholar 

  • Mizuno Y. and Ohta K. (1986) Regional distributions of thiobarbituric acid-reactive products, activities of enzymes regulating the metabolism of oxygen free radicals and some of the related enzymes in adult and aged rat brains.J. Neurochem. 46, 1344–1352.

    Article  PubMed  CAS  Google Scholar 

  • Ochi T. (1992) Inhibition of glutathione peroxidase by tertiary-butylhydroperoxide in cultured chinese hamster cells and the role of cellular glutathione in the recovery of the activity.Toxicology 71, 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Ochi T. and Cerutti P. A. (1989) Differential effects of glutathione depletion and metallothionein induction on the induction of DNA single strand breaks and cytotoxicity by t-butyl hydroperoxide in cultured mammalian cells.Chem-Biol. Interactions 72, 335–345.

    Article  CAS  Google Scholar 

  • Ogus H. and Ozer N. (1991) Human jejunal glutathione reductase: Purification and evaluation of the NADPH and glutathione induced changes in redox state.Biochem. Med. Metab. Biol. 45, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Paglia D. E. and Valentine W. N. (1967) Studies of the quantitative and qualitative characterization of erythrocyte glutathione peroxidase.J. Lab. Clin. Med. 70, 158–169.

    PubMed  CAS  Google Scholar 

  • Prohaska J. R. and Ganther H. E. (1977) Glutathione peroxidase activity of glutathione-S-transferases purified from rat liver.Biochem. Biophys. Res. Commun. 76, 437–445.

    Article  CAS  Google Scholar 

  • Schmidley J. W. (1990) Free radicals in central nervous system ischemia.Stroke 21, 1086–1090.

    PubMed  CAS  Google Scholar 

  • Stadtman E. R. (1992) Protein oxidation and aging.Science 257, 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  • Tappel A. L. (1980) Measurement of and protection from in vivo lipid peroxidation, inFree Radicals in Biology (Pryor W., ed.), pp. 1–47, Academic, New York, NY.

    Google Scholar 

  • Vertechy M., Cooper M. B., Ghirardi O. and Ramacci M. T. (1983) The effect of age on the activity of enzymes of peroxide metabolism in rat brain.Exp. Gerontol. 28, 77–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M.L., Klaidman, L. & Adams, J.D. Age-dependent effects oft-BuOOH on glutathione disulfide reductase, glutathione peroxidase, and malondialdehyde in the brain. Molecular and Chemical Neuropathology 26, 95–106 (1995). https://doi.org/10.1007/BF02815008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815008

Index Entries

Navigation