Skip to main content
Log in

Antibody-targeted polymer-bound drugs

  • Reviews and Papers
  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Drug targeting is an attractive new approach to killing cancer cells while leaving normal tissue unharmed. Recently we have developed a new generation of antibody-targeted immunosuppressive (cyclosporin A) and cytostatic (daunomycin, doxorubicin) drugs and photosensitizers (chlorin e6) effectivein vitro andin vivo. The drugs and the targeting antibody (polyclonal and monoclonal) are conjugated to the oligopeptidic side chains of a water-soluble synthetic carrier, copolymer of N-(2-hydroxypropyl)methacrylamide. The composition of the side chains ensures the stability of the linkage between the drug and the polymeric carrier in the bloodstream and its intralysosomal degradability which is a prerequisite for the pharmacological activity of the preparation. Antibody-targeted polymer bound drugs show considerably decreased hepatotoxicity, cardiotoxicity, myelotoxicity and nephrotoxicity. Two adriamycin-HPMA copolymers are in Phase I/II clinical trials in United Kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuchowski A., McCoy J.R., Palczuk N.C., van Es T., Davis F.F.: Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase.J. Biol. Chem.252, 3582–3586 (1977a).

    PubMed  CAS  Google Scholar 

  • Abuchowski A., Van Es T., Palczuk N.C., Davis F.F.: Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol.J. Biol. Chem.252, 3578–3581 (1977b).

    PubMed  CAS  Google Scholar 

  • Abuchowski A., Davis F.F.: Preparation and properties of polyethylene glycol-trypsin adducts.Biochim. Biophys. Acta578, 41–46 (1979).

    PubMed  CAS  Google Scholar 

  • Arnon R., Sela M.: Targeted chemotherapy: Drugs conjugated to antitumor antibodies.Cancer Surv.1, 429–446 (1982).

    Google Scholar 

  • Ash D., Brown J.B.: Photodynamic therapy: achievements and prospects.Brit. J. Cancer60, 151–152 (1989).

    PubMed  CAS  Google Scholar 

  • Bayley H., Gasparro F., Edelson R.: Photoactivatable drugs.TIBS 8, 138–143 (1987).

    CAS  Google Scholar 

  • Beveridge T.: Clinical transplantation—overview:Progr. Allergy38, 269–292 (1986).

    CAS  Google Scholar 

  • Borel J.F., Feurer C., Gubler H.U., Staehlin H.: Biological effects of cyclosporin A: A new antilymphocyte agent.Agents Action6, 468–475 (1976).

    Article  CAS  Google Scholar 

  • Borel J.F., Gunn H.C.: Cyclosporine as a new approach to therapy of autoimmune diseases.Ann. N.Y. Acad. Sci.475, 307–319 (1985).

    Article  Google Scholar 

  • Boswell H.S., Wade P.M., Jr.,Quesenberry P.J.: Thy-1 antigen expression by murine high-proliferative capacity hematopoietic progenitor cells. 1. Relation between sensitivity to depletion by Thy-1 antibody and stem cell generation potential.J. Immunol.133, 2940–2949 (1984).

    PubMed  CAS  Google Scholar 

  • Brenner D.E., Wiernik P.H., Wesley M., Bachur N.R.: Acute doxorubicin toxicity. Relationship to pretreatment, liver function, response and pharmacokinetics in patients with acute nonlymphocytic leukemia.Cancer53, 1042–1048 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Burns P., North J.A.: Adriamycin transport and sensitivity in fatty acid-modified leukemia cells.Biochim. Biophys. Acta888, 10–17 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Chan K.K., Cohen J.L., Gross J.F., Himmelstein K.J., Bateman J.R., Tsu-Lee Y., Marlis A.S.: Prediction of adriamycin disposition in cancer patients using a physiologic, pharmacokinetic model.Cancer Treat. Rep.62, 1161–1171 (1978).

    PubMed  CAS  Google Scholar 

  • Chan W.S., Marshall J.F., Lam G.Y.F., Hart I.R.: Tissue uptake, distribution, and potency of the photoactivatable dye chloroaluminium sulphonated phtalocyanine in mice bearing transplantable tumors.Cancer Res.48, 3040–3044 (1988).

    PubMed  CAS  Google Scholar 

  • Chang T.M., Neville D.M.: Arteficial hybrid protein containing a toxic protein fragment and a cell membrane receptor-binding moiety in a disulphide conjugate. 1. Synthesis of diphteria toxin fragment A-S-S-human placental lactogen with methyl-5-bromovalerimidate.J. Biol. Chem.252, 1505–1514 (1977).

    PubMed  CAS  Google Scholar 

  • Cieplak W., Gaudin H.M., Eidels L.: Identification of specific diphtheria toxin-binding proteins in the surface of vero and BS-C-1 cells.J. Biol. Chem.262, 13246–13253 (1987).

    PubMed  CAS  Google Scholar 

  • Cummings J., Merry S., Willmott N.: Disposition kinetics of adriamycin, adriamycin, adriamycinol and their 7-deoxyaglycones in AKR mice bearing a subcutaneously growing Ridgway osteogenic sarcoma.Eur. J. Cancer Clin. Oncol.22, 451–460 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Davies D.A.L., O'Neill G.J.:In vivo andin vitro effects of tumor specific antibodies with chlorambucil.Brit. J. Cancer Suppl.28, 285–298 (1973).

    CAS  Google Scholar 

  • Diener E, Diner V.E., Sinha A., Xie S., Vergidis R.: Specific immunosuppression by immunotoxins containing daunomycin.Science231, 148–150 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Doiron D.R., Suassand L.O., Profio A.E., pp. 63–76 in D. Kessel, T.J. Dougherty (Eds):Porphyrin Photosensitization. Plenum Press, New York 1983.

    Google Scholar 

  • Dougherty T.J.: Photodynamic therapy, pp. 175–188 in H.R. Withers, L.J. Peters (Eds):Innovation in Radiation. Springer, New York 1988.

    Google Scholar 

  • Dougherty T.J., Cooper M.T., Mang T.S.: Cutaneous phototoxic occurrences in patients receiving Photofrin.Lasers Surg. Med.10, 485–488 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Duncan R., Cable H.C., Lloyd J.B.,Rejmanová P., Kopeček J.: Degradation of side-chains of N-(2-hydroxypropyl)methacrylamide copolymers by lysosomal thiolproteinases.Biosci. Rep. 2, 1041–1046 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Duncan R., Kopeček J.: Soluble synthetic polymers as potential drug carriers.Adv. Polym. Sci.57, 51–101 (1984).

    CAS  Google Scholar 

  • Duncan R., Lloyd J.B.: Biological evaluation of soluble synthetic polymers as drug carriers, pp. 9–22 in J.M. Anderson, S.W. Kim (Eds).Recent Advances in Drug Delivery Systems. Plenum Press, New York 1984.

    Google Scholar 

  • Duncan R., Lloyd J.B., Rejmanová P., Kopeček J.: Methods of targeting of N-(2-hydroxypropyl)methacrylamide copolymers to particular cell types.Makromol. Chem. Suppl.9, 3–12 (1985).

    Article  CAS  Google Scholar 

  • Duncan R., Seymour L.W., Scarlett L., Lloyd J.B., Rejmanová P., Kopeček J.: Fate of N-(2-hydroxypropyl)-methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats.Biochim. Biophys. Acta880, 62–71 (1986).

    PubMed  CAS  Google Scholar 

  • Duncan R., Kopečková-Rejmanová P., Strohalm J., Hume I.C., Cable H.C., Pohl J., Lloyd J.B., Kopeček J.: Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugatesin vitro.Brit. J. Cancer55, 165–174 (1987).

    PubMed  CAS  Google Scholar 

  • Duncan R., Kopečková P., Strohalm J., Hume I.C., Lloyd J.B., Kopeček J.: Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. 2. Evaluation of daunomycin conjugatesin vivo against L1210 leukemia.Brit. J. Cancer57, 147–156 (1988).

    PubMed  CAS  Google Scholar 

  • Dunn W., Hubbard A., Aronson N. Jr.: Low temperature selectivity inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of125I-asialofetuin by the perfused rat liver.J. Biol. Chem.255, 5971–5978 (1980).

    PubMed  CAS  Google Scholar 

  • Edelson R., Berger C., Gasparro F., Jegasothy B., Heald P., Wintroub B., Vonderheid E., Knobler R., Wolff K., Plewis G., McKiernan G., Christiansen I., Oster M., Honigsmann H., Wilford H., Kokoschka E., Rehle T., Perez M., Stingl G., Laroche L.: Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy.New Engl. J. Med.316, 297–302 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Everall J.D., Dowd P., Davies D.A.L., O'Neill G.J., Rowland G.F.: Treatment of melanoma by passive humoral immunotherapy using antibody drug system.Lancetii/8048, 1102–1106 (1977).

    Google Scholar 

  • Flanagan P.A., Kopečková P., Kopeček J., Duncan R.: Evaluation of antibody-N-(2-hydroxypropyl)methacrylamide copolymer conjugates as targetable drug carrier. 1. Binding, pinocytic uptake and intracellular distribution of antitransferrin receptor antibody-conjugates.Biochim. Biophys. Acta993, 83–89 (1989).

    PubMed  CAS  Google Scholar 

  • Flanagan P.A., Duncan R., Říhová B., Subr V., Kopeček J.: Immunogenicity of protein-N-(2-hydroxypropyl)methacrylamide copolymer conjugates in A/J and B10 mice.J. Bioact. Compat. Polymers5, 151–166 (1990).

    Article  CAS  Google Scholar 

  • Foote C.S.: Type I and type II mechanisms of photodynamic action, pp. 22–38 in J.R. Heitz, K.R. Downum (Eds):Light Activated Pesticides. ACS Symposium Series, ACS, Washington (DC) 1987.

  • Formelli F., Carsana R., Pollini C.: Pharmacokinetics of 4-deoxy-4-iodo-doxorubicin.Cancer Res.47, 5401–5406 (1987).

    PubMed  CAS  Google Scholar 

  • Gregoriadis G.: Liposomes in therapeutic and preventive medicine: the development of the drug carrier concept.Ann. N.Y. Acad. Sci. USA308, 343–354 (1978).

    Article  CAS  Google Scholar 

  • Hasan T.: Selective photoxicity using monoclonal antibody-chromophore conjugates.Proc. SPIE997, 42–47 (1988).

    Google Scholar 

  • Henderson B.W., Dougherty T.J.: How does photodynamic therapy work?Photochem. Photobiol.55, 145–157 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Hollander N.: Thy-1 negative and Ly-1 negative variants of T cells produce interleukin-2 in response to mitogens.J. Immunol.139, 437–442 (1987).

    PubMed  CAS  Google Scholar 

  • Hurwitz E.: Specific and nonspecific macromolecule-drug conjugates for the improvement of cancer chemotherapy.Biopolymers22, 557–567 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Jansen F. K., Blythman H. E., Carriére D., Caselias P., Gros P., Laurent J. C., Paolucci F., Pau B., Poncelet P., Richer G., Vidal H., Voisin G. A.: Immunotoxins: Hybrid molecules combining high specificity and potent cytotoxicity.Immunol. Rev.62, 185–216 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Kopeček J., Rejmanová P., Chytrý V.: Polymers containing enzymatically degradable bonds. I. Chymotrypsin catalyzed hydrolysis ofp-nitroanilides of phenylalanine and tyrosine attached to side-chains of copolymers of N-(2-hydroxypropyl)methacrylamide.Makromol. Chem.182, 799–809 (1981).

    Article  Google Scholar 

  • Kopeček J.: Biodegradation of polymers for biomedical use, pp. 305–320 in H. Benoit, P. Rempp (Eds):IUPAC Macromolecules. Pergamon Press, Oxford 1982.

    Google Scholar 

  • Kopeček J.: Synthesis of tailor-made soluble polymeric drug carriers, pp. 41–62 in J.M. Anderson, S.W. Kim (Eds):Recent Advances in Drug Delivery Systems. Plenum Press, New York 1984.

    Google Scholar 

  • Kopeček J., Duncan R.: Targetable polymeric prodrugs.J. Control. Rel.6, 315–327 (1987).

    Article  Google Scholar 

  • Kopeček J., Říhová B., Krinick N.L.: Targetable polymeric prodrugs.J. Control. Rel.6, 315–327 (1987).

    Article  Google Scholar 

  • Kopeček J., Říhová B., Krinick N.L.: Targetable photoactivatable polymeric drugs.J. Control. Rel.16, 137–144 (1991).

    Article  Google Scholar 

  • Kopeček, J., Rejmanová, P., Strohalm J., Ulbrich K., Říhová B., Chytrý V., Duncan R, Lloyd J.B.: Synthetic polymeric drugs.US Pat.5 037 883 (1991).

  • Krinick N.L., Říhová B., Ulbrich K., Andrade J.D., Kopeček J.: Targetable photoactivatable drugs. 1. Synthesis of watersoluble galactosamine containing polymeric carriers of chlorin e6 and their photodynamic effect in PLC cellsin vitro.SPIE997, 70–85 (1988).

    Google Scholar 

  • Krinick N.L., Říhová B., Ulbrich K., Strohalm J., Kopeček J.: Targetable photoactivatable drugs. 2. Synthesis of N-(2-hydroxyropyl)methacrylamide copolymer—anti-Thy-1,2 antibody-chlorin e6 conjugates and a preliminary study of their photodynamic effect on mouse splenocytesin vitro.Makromol. Chem.191, 839–856 (1990).

    Article  CAS  Google Scholar 

  • Laserman L.D., Barbet J., Kourilsky F., Weinstein J.N.: Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A.Nature288, 602–604 (1980).

    Article  Google Scholar 

  • Lynch D.H., Haddad S., King V.J., Ott M.J., Straight R.C., Jolles C.J.: Systemic immunosuppression induced by photo dynamic therapy (PDT) is adoptively transferred by macrophages.Photochem. Photobiol.49, 453–458 (1989).

    Article  PubMed  CAS  Google Scholar 

  • McConnell I., Munro A., Waldmann H.:The Immune System. A Course on the Molecular Basis of Immunity. Blackwell Scientific Publications, Oxford 1981.

    Google Scholar 

  • Mihatsch M.J., Thiel G., Spichtin H.P., Oberholzer M., Brunner F.P., Harder F., Olivieri V., Bremer R., Ryffel B., Stocklin E., Torhorst J., Gudat F., Zollinger H.V., Loerscher R.: Morphological findings in kidney transplants after treatment with cyclosporin.Transplant. Proc.15, 2821–2835 (1983).

    Google Scholar 

  • Mihatsch M.J., Thiel G., Ryffel B.: Morphology of cyclosporin nephropathy.Prog. Allergy38, 447–465 (1986).

    PubMed  CAS  Google Scholar 

  • Mihatsch M.J., Ryffel B., Hermle M., Brunner F.P., Thiel G.: Morphology of cyclosporin nephrotoxicity in the rat.Clin. Nephrol.25 (Suppl. 1), S2-S8 (1986).

    PubMed  Google Scholar 

  • Miller R.A., Oseroff A.R., Stratte P.T., Levy T.: Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma.Blood62, 88–992 (1983).

    Google Scholar 

  • Moan J.: Porphyrin photosensitization of cells, pp. 101–112 in G. Jori, C. Perria (Eds):Photodynamic Therapy of Tumors and Other Diseases. Libreria, Progotta, Padova 1985.

    Google Scholar 

  • Moan J., Beg K., Western A., Malik Z., Ruck A., Schneckenburger H.: Intracellular localization of photosensitizers, pp. 95–107 inCiba Foundation Symposium 146: Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use. Wiley, Chichester (UK) 1989.

    Chapter  Google Scholar 

  • Moolten F.L., Capparll N.J., Cooperband S.R.: Antitumor effects of antibody-diphtheria toxin conjugates: Use of haptencoated tumor cells as an antigenic target.J. Nat. Canc. Inst.49, 1057–1062 (1972).

    CAS  Google Scholar 

  • Morrison W.L.: Photoimmunology.J. Invest. Dermacol.77, 71–76 (1981).

    Article  Google Scholar 

  • Mullooly V.M., Abramson A.L., Shinkowitz M.J.: Dihematoporphyrin ether-induced photosensitivity in laryngeal papilloma patients.Lasers Surg. Med.10, 349–356 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Myers B.D., Newton L., Beshkos C., Macovial J.A., Frist W.H., Derby G.C., Perbroth M.G., Sibley R.K.: Chronic injury of human renal mierovessels with low dose cyclosporin therapy.Transplantation46, 694–703 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Neefjes J.J., Ploegh H.L.: Intracellular transport of MHC class II molecules.Immunol. Today13, 179–184 1992.

    Article  PubMed  CAS  Google Scholar 

  • Neville D.M., Youle R.J.: Monoclonal antibody-ricin or ricin A chain hybrids: Kinetic analysis of cell killing for tumor therapy.Immunol. Rev.62, 75–91 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Niederberger W., Lemaire M., Maurer G., Nussbaumer K., Wagner O.: Distribution and binding of cyclosporine in blood and tissues.Transplant. Proc.15, 2419–2421 (1983).

    CAS  Google Scholar 

  • Nourse W., Parkhurst R., Skinner W., Jordan R.: Photodynamic toxicity of porphyrins and chlorins for a human tumor cell line: Combined light and concentration dose responses for the retained fraction.Biochim. Biophys. Res. Commun.151, 506–511 (1988).

    CAS  Google Scholar 

  • Oeltman T.N., Heath E.C.: A hybrid protein containing the toxic subunit of ricin and the cell specific subunit of chorionic gonadotropin. II. Biologic properties.J. Biol. Chem.254, 1028–1032 (1979).

    Google Scholar 

  • Oseroff A., Ohuoha D., Hasan T., Bommer J., Yarmush M.: Antibody targeted photolysis: Selective photodestruction of human T-cell leukemia cells using monoclonal antibody-chlorin e6 conjugates.Proc. Nat. Acad. Sci. USA83, 8744–8748 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Paluska E., Hrubá A., Šterba O., Kopeček J.: Effect of a synthetic poly-N-(2-hydroxypropyl)methacrylamide (DUXON) on haemopoiesis and graft-versus-host reaction.Folia Biol. (Prague)32, 91–102 (1986).

    CAS  Google Scholar 

  • Panneerselvam M., Bredehorst R., Vogel C.W.: Immobilized doxorubicin increases the complement susceptibility of human melanoma cells by protecting complement component C3b against inactivation.Proc. Nat. Acad. Sci. USA3, 9144–9148 (1986).

    Article  Google Scholar 

  • Raso V.: Antibody-targeted delivery of toxic molecules to antigen-bearing target cells.Immunol. Rev.62, 93–117 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Rejmanová P., Pohl J., Baudyš M., Kostka V., Kopeček J.: Polymers containing enzymatically degradable bonds. 8. Degradation of oligopeptide sequences in N-(2-hydroxypropyl)methacrylamide copolymers by bovine cathepsin B.Makromol. Chem.184, 2009–2020 (1983).

    Article  Google Scholar 

  • Rejmanová P., Kopeček J., duncan R., Lloyd J. B.: Stability in rat plasma and serum of lysosomally degradable oligopeptide sequences in N-(2-hydroxypropyl) methacrylamide copolymers.Biomaterials 6, 45–48 (1985).

    Article  PubMed  Google Scholar 

  • Říhová B., Ulbrich K., Kopeček J., Mančal P.: Immunogenicity of N-(2-hydroxypropyl)methacrylamide copolymers—potential hapten or drug carriers.Folia Microbiol.28, 217–227 (1983).

    Article  Google Scholar 

  • Říhová B., Kopeček J., Ulbrich K., Pospíšil M., Mančal P.: Effect of the chemical structure, of N-(2-hydroxypropyl)methacrylamide copolymers on their ability to induce antibody formation in inbred strains of mice.Biomaterials5, 143–148 (1984).

    Article  PubMed  Google Scholar 

  • Říhová B., Říha I.: Immunological problems of polymer—bound drugs.CRC Crit. Rev. Therap. Drug Carrier Syst.1, 311–374 (1984).

    Google Scholar 

  • Říhová B., Kopeček J.: Biological properties of targetable poly[N-(2-hydroxypropyl)methacrylamide]-antibody conjugates.J. Control. Rel.2, 289–310 (1985).

    Article  Google Scholar 

  • Říhová B., Kopeček J., Ulbrich K., Chytrý V.: Immunogenicity of N-(2-hydroxypropyl)methacrylamide copolymers.Makromol. Chem. Suppl.9, 13–24 (1985).

    Article  Google Scholar 

  • Říhová B., Kopeček J., Kopečková-Rejmanová P., Strohalm J., Plocová D., Semorádová H.: Bioaffinity therapy with antibodies and drugs bound to soluble synthetic polymers.J. Chromatogr. (Biomed. Appl.)376, 221–233 (1986).

    Article  Google Scholar 

  • Říhová B., Kopečková P., Strohalm J., Rossmann P., Větvička V., Kopeček J.: Antibody-directed affinity therapy applied to the immune system:In vivo effectiveness and limited toxicity of daunomycin conjugated to HPMA copolymers and targeting antibody.Clin Immunol. Immunopathol.46, 100–114 (1988).

    Article  PubMed  Google Scholar 

  • Říhová B., Vereš K., Fornůsek L., Ulbrich K., Strohalm J., Větvička V., Bilej M., Kopeček J.: Action of polymeric prodrugs based on N-(2-hydroxypropyl)methacrylamide copolymers. II. Body distribution and T-cell accumulation of free and polymer-bound (125I)daunomycin.J. Control. Rel.10, 37–49 (1989).

    Article  Google Scholar 

  • Říhová B., Strohalm J., Plocová D., Ulbrich K.: Selectivity of antibody-targeted anthracycline antibiotics on T lymphocytes.J. Bioact. Compat. Polymers5, 249–266 (1990a).

    Article  Google Scholar 

  • Říhová B., Bilej M., Větvička V., Ulbrich K., Strohalm J., Kopeček J., Duncan R.: Biocompatibility of N-(2-hydroxypropyl)methacrylamide copolymers containing adriamycin.Biomaterials10, 335–342 (1989b).

    Article  PubMed  Google Scholar 

  • Říhová B., Větvička V., Strohalm J., Ulbrich K., Kopeček J.: Action of polymeric prodrugs based on N-(2-hydroxypropyl)methacrylamide copolymers. I. Suppression of the antibody response and proliferation of mouse splenocytesin vitro.J. Control. Rel.9, 21–32 (1990).

    Article  Google Scholar 

  • Říhová B., Krinick N. L., Kopeček J.: Targetable photoactivatable drugs.J. Mater Sci. Mater. Med.2, 238–242 (1991).

    Article  Google Scholar 

  • Říhová B., Jegorov A., Strohalm J., Maťha V., Rossmann P., Fornůsek L., Ulbrich K.: Antibody-targeted cyclosporin A.J. Control. Rel.19, 25–40 (1992).

    Article  Google Scholar 

  • Říhová B., Krinick N.L., Kopeček J.: Targetable photoactivatable drugs. 3.In vitro efficacy of polymer-bound chlorin e6 toward human hepatocarcinoma cell line (PLC/PRF/5) targeted with galactosaminne and to mouse splenocytes targeted with anti-Thy-1.2 antibodies.J. Control. Rel.25, 71–87 (1993).

    Article  Google Scholar 

  • Roberts W.B., Shaw G.Y., Nelson J.S., Smith K.M., Berns M.W.:In vitro characterization of monoaspartyl chlorin e6 and diaspartyl chlorin e6 for photodynamic therapy.J. Nat. Cancer Inst.80, 330–336 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Roberts W.G., Berns M.W.:In vitro photosensitization. I. Cellular uptake and subcellular localization of mono-l-aspartyl chlorin e6, chloro-aluminium sulfonated phtalocyanine, and photofrin II.Lasers Surg. Med.9, 90–101 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Rowland G.F., O'Neill G.J., Davis D.A.L.: Suppression of tumor growth in mice by a drug-antibody conjugate using a novel approach to linkage.Nature255, 487–488 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Rossi C., Gasparini G., Canobbio L., Galligioni R., Volpe E., Candiani E., Toffoli G., Dincalci M.: Doxorubicin distribution in human breast cancer.Cancer Treat. Rep.71, 1221–1226 (1987).

    PubMed  CAS  Google Scholar 

  • Rossmann P., Jirka J., Zástava V., Reneltová J., Kočandrle V.: Die Rejektionsnephropathie vor und nach Einführung von Cyclosporin A in die Therapie.Zbl. Allg. Pathol. Anat.132, 435–458 (1986).

    CAS  Google Scholar 

  • Rossmann P., Jirka J., Chadimová M., Reneltová I., Saudek F.: Arteriolosclerosis of the human renal allograft: morphology, origin, life history and relationship to cyclosporin therapy.Virchows Archiv. A Pathol. Anat.418, 129–141 (1991).

    Article  CAS  Google Scholar 

  • Rossmann P., Říhová B., Strohalm J., Ulbrich K.: Morphology of rat kidney and thymus after native and antibody-coupled cyclosporin A (reduced toxicity of targeted drug).Pathol. Res. Pract, in press.

  • Ryffel B., Gotz V., Heuberger B.: Cyclosporine receptors on human lymphocytes.J. Immunol.129, 1978–1982 (1982).

    PubMed  CAS  Google Scholar 

  • Ryffel B., Siegl H., Petric R., Muller A.M., Hauser R., Mihatsch M.J.: Nephrotoxicity of cyclosporin in spontaneously hypertensive rats: effects on blood pressure and vascular lesions.Clin. Nephrol.25 (Suppl.), 193–198 (1986).

    Google Scholar 

  • Ryffel B.: Toxicology-experimental studies.Progr Allergy38, 181–197 (1986).

    CAS  Google Scholar 

  • Ryffel B., Foxwell B.M., Gee A., Greiner B., Woerly G., Mihatsch M.J.: Cyclosporin-relationship of side effects to mode of action.Transplantation46 (Suppl.), 90S-96S (1988).

    Article  PubMed  CAS  Google Scholar 

  • Ryser H.J.P., Shen W.C., Merk F.B.: Membrane transport of macromolecules: new carrier functions of proteins and poly-(amino acids).Life Sci.22, 1253–1267 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A.L., Fridovich S.E., Lodish H.F.: Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line.J. Biol. Chem.257, 4230–4237 (1982).

    PubMed  CAS  Google Scholar 

  • Sehon A.H.: Conversion of xenogeneic monoclonal antibodies to specific tolerogens, from advances in the applications of monoclonal antibodies in clinical oncology.Royal Post Graduate Medical School, University of London 1988.

  • Seymour L.W., Duncan R., Strohalm J., Kopeček J.: Effect of molecular weight of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal and intravenous administration in rats.J. Biomed. Mater.21, 1341–1358 (1987).

    Article  CAS  Google Scholar 

  • Seymour L.W., Duncan R., Kopečková P., Kopeček J.: Potential of sugar residues attached to N-(2-hydroxypropyl) methacrylamide copolymers as targeting groups for the selective delivery of drugs.J. Bioact. Compat. Polym.2, 97–119 (1987).

    Article  CAS  Google Scholar 

  • Shen W.C., Du X., Feener E.P., Ryser H.J.P.: The intracellular release of methotrexate from a synthetic drug carrier system targeted to Fc-receptors bearing cells.J. Control. Rel.10, 89–96 (1989).

    Article  CAS  Google Scholar 

  • Shepherd V.L.: Intracellular pathways and mechanisms of sorting in receptor-mediated endocytosis.TIPS10, 458–462 (1988).

    Google Scholar 

  • Spikes J.D.: Porphyrins and related compounds as photodynamic photosensitizers.Ann. N.Y. Acad. Sci.244, 496–508 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Spikes J.D., Jori G.: Photodynamic therapy of tumors and other diseases using porphyrins.Laser Med. Sci.2, 3–15 (1987).

    Article  Google Scholar 

  • Steele J.K., Liu D., Stammers A.T., Whitney S., Levy J.G.: Suppressor deletion therapy: Selective elimination of T suppressor cellsin vivo using a hematoporphyrin conjugated monoclonal antibody permits animals to reject syngeneic tumor cells.Cancer Immunol. Immunother.26, 125–131 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Steinman L., Rosenbaum J., Sriram S., McDevitt H.O.:In vivo effects of antibodies to immune response gene products: Prevention of experimental allergic encephalitis.Proc. Nat. Acad. Sci. USA78, 7111–7114 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Steinman R.M., Mellemn I.S., Muller W.A., Cohn Z.A.: Endocytosis and recycling of plasma membrane.J. Cell. Biol.96, 1–13 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Szekerke M., Driscoll J.S.: The use of macromolecules as carriers of antitumor drugs.Eur. J. Cancer13, 529–537 (1977).

    PubMed  CAS  Google Scholar 

  • Šimečková J., Plocová D., Říhová B., Kopeček J.: Activity of complement in the presence of N-(2-hydroxypropyl) methacrylamide copolymers.J. Bioact. Compat. Polymers1, 20–31 (1986).

    Article  Google Scholar 

  • Terasaki T., Iga T., Sugiyama Y., Hanano M.: Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin. Interorgan and interspecies variation in tissue to plasma partition coefficients in rats, rabbits and guinea pigsJ. Pharm. Sci.73, 1359–1362 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Thorpe P.E., Ross W.C.J.: The preparation and cytotoxic properties of antibody-toxin conjugates.Immunol. Rev.62, 119–158 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Till J., McCulloch E.A.: A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.Radiat. Res.14, 213–222 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Timour Q., Nony P., Lang J., Lakhal M., Trillet V., Faucon G.: Doxorubicin concentration time course in the myocardium after single administration to the dog.Cancer Chemother.20, 267–269 (1987).

    Article  CAS  Google Scholar 

  • Tokes Z.A., Rogers K.E., Rembaum A.: Synthesis of adriamycin-coupled polyglutaraldegyde microspheres and evaluation of their cytostatic activity.Proc. Nat. Acad. Sci. USA79, 2026–2030 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Tritton T.R., Yee G.: The anticancer agent adriamycin can be actively cytotoxic without entering cells.Science217, 248–250 (1982).

    Article  CAS  Google Scholar 

  • Ulbrich K., Zacharieva E.I., Obereigner B., Kopeček J.: Polymers containing enzymatically degradable bonds. V. Hydrophilic polymers degradable by papain.Biomaterials1, 199–204 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich K., Strohalm J., Kopeček J.: Polymers containing enzymatically degradable bonds. III. Poly-[N-(2-hydroxypropyl)-methacrylamide] chains connected by oligopeptide sequences cleavable by trypsin.Makromol. Chem.182, 1917–1928 (1981).

    Article  CAS  Google Scholar 

  • Ulbrich K., Koňák Č., Tuzar Z., Kopeček J.: Solution properties of drug carrier based on poly[N-(2-hydroxypropyl)methacrylamide]-containing biodegradable bonds.Makromol. Chem.188, 1261–1272 (1987).

    Article  CAS  Google Scholar 

  • Vitetta E.S., Krolick K.A., Uhr J.W.: Neoplastic B cells as targets for antibody-ricin A chain immunotoxins.Immunol. Rev.62, 159–183 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Vitetta E.S., Uhr J.W.: The potential use of immunotoxins in transplantation, cancer therapy, and immunoregulation.Transplantation37, 535–538 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Vitetta E.S., Thorpe P.E., Uhr J.W.: Immunotoxins: magic bullets or misquided missiles?Immunol. Today14, 252–264, (1993).

    Article  PubMed  CAS  Google Scholar 

  • Volfová I., Říhová B., Větvička V., Rossmann P., Ulbrich K.: Biocompatibility of biopolymers.J. Bioact. Compat. Polymers7, 175–190 (1992).

    Article  Google Scholar 

  • Waldor M.K., Sriram S., McDevitt H.O., Steinman L.:In vivo therapy with monoclonal anti-I-A antibody suppresses immune responses to acetylcholine receptor.Proc. Nat., Acad. Sci. USA80, 2713–2717 (1983).

    Article  CAS  Google Scholar 

  • Wasik M.A., Beller D.I.: Induction of macrophage membrane interleukin. I. Expression by T-cell dependent and T-cell independent pathways is inhibited by cyclosporin A.Clin. Immunol. Immunopathol.52, 331–349 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Williams D.E., Boswell H.S., Floyd A.D., Broxmeyer K.E.: Pluripotential hematopoietic stem cells in post-5-fluorouracil murine bone marrows express the Thy-1 antigen.J. Immunol.135, 1004–1011 (1985).

    PubMed  CAS  Google Scholar 

  • Yemul S., Berger S., Estabrook A., Suarez S., Edelson R., Bayley H.: Selective killing of T lymphocytes by phototoxic liposomes.Proc. Nat., Acad. Sci. USA84, 246–250 (1987).

    Article  CAS  Google Scholar 

  • Yoda Y., Nakazawa M., Abe T., Kawakami Z.: Prevention of doxorubicin myocardial toxicity in mice by reduced glutathione.Cancer Res.46, 2551–2556 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Říhová, B. Antibody-targeted polymer-bound drugs. Folia Microbiol 40, 367–384 (1995). https://doi.org/10.1007/BF02814745

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814745

Keywords

Navigation