Skip to main content
Log in

The role of thermal stabilization in martensite transformations

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The variation of the kinetics of the martensite transformation with carbon content and martensite habit plane has been investigated in several Fe−Ni based alloys. Transformation in an Fe-25 wt pct Ni-0.02 wt pct C alloy exhibits predominantly athermal features, but some apparently isothermal transformation also occurs. In a decarburized alloy, on the other hand, the observed kinetic features, such as the dependence ofM s on cooling rate, were characteristic of an isothermal transformation. In contrast, Fe-29.6 wt pct Ni-10.7 wt pct Co alloys with carbon contents of 0.009 wt pct C and 0.003 wt pct C transform by burst kinetics to {259}γ plate. At both these carbon levels, theM b temperatures of the Fe−Ni−Co alloys are independent of cooling rate. It is proposed that the change in kinetic behavior of the Fe-25 pct Ni alloy with the different carbon contents is due to the occurrence of dynamic thermal stabilization in the higher carbon alloy. Dynamic thermal stabilization is relatively unimportant in the Fe−Ni−Co alloys which transform by burst kinetics to {259}γ plate martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Klosteman and W. G. Burgers:Acta Met., 1964, vol. 12, pp. 355–60.

    Article  Google Scholar 

  2. J. A. Klosterman:The Mechanism of Phase Transformations in Crystalline Solids, pp. 143–51, Institute of Metals Special Report, no. 33, London, 1969.

  3. V. Raghavan and M. Cohen:Met. Trans., 1971, vol. 2, pp. 2409–18.

    CAS  Google Scholar 

  4. C. L. Magee:Phase Transformations, pp. 115–56, ASM, Metals Park, OH, 1970.

    Google Scholar 

  5. A. R. Entwistle:Met. Trans., 1971, vol. 2, pp. 2395–2406.

    Article  Google Scholar 

  6. A. R. Entwistle and J. A. Feeney:The Mechanism of Phase Transformations in Crystalline Solids, pp. 156–61, Institute of Metals Special Report no. 33, London, 1969.

  7. C. L. Magee:Met. Trans., 1971, vol. 2, pp. 2419–30.

    CAS  Google Scholar 

  8. P. Fisher: Ph.D. Thesis, University of New South Wales, Australia, 1974.

  9. R. Brook and A. R. Entwistle:J. Iron Steel Inst., 1965, vol. 203, pp. 905–12.

    CAS  Google Scholar 

  10. E. S. Machlin and M. Cohen:J. Metals, 1951, vol. 3, pp. 746–54; also:Trans. AIME, 1951, vol. 191, pp. 746–54.

    CAS  Google Scholar 

  11. W. K. C. Jones:The Mechanism of Phase Transformations in Crystalline Solids, p. 201, Institute of Metals Special Report no. 33, Discussion, London, 1969.

  12. S. R. Pati and M. Cohen:Acta Met., 1969, vol. 17, pp. 189–99.

    Article  CAS  Google Scholar 

  13. R. Brook, A. R. Entwistle, and E. F. Ibrahim:J. Iron Steel Inst., 1960, vol. 195, pp. 292–98.

    CAS  Google Scholar 

  14. R. G. B. Yeo:Trans. ASM, 1964, vol. 57, pp. 48–61.

    CAS  Google Scholar 

  15. R. G. B. Yeo:Trans. TMS-AIME, 1962, vol. 224, pp. 1222–27.

    CAS  Google Scholar 

  16. J. Philibert:Comptes Rendus, 1965, vol. 240, pp. 190–92.

    Google Scholar 

  17. C. Crussard and J. Philibert:The Mechanism of Phase Transformations in Metals, pp. 309–14, Institute of Metals Report no. 18, Discussion, London, 1956.

  18. W. S. Owen, E. A. Wilson, and T. Bell:High Strength Materials, pp. 167–207, J. Wiley, NY, 1965.

    Google Scholar 

  19. Martensite, E. R. Petty, ed., pp. 65–93, Longman, London, 1970.

    Google Scholar 

  20. L. Kaufman:Physical Properties of Martensite and Bainite, pp. 24–25, Iron and Steel Inst. Special Report no. 93, Discussion 1, London, 1965.

  21. A. W. McReynolds:J. Appl. Phys., 1946, vol. 17, pp. 832–33.

    Article  Google Scholar 

  22. M. G. H. Wells and D. R. F. West:J. Iron Steel Inst., 1962, vol. 200, pp. 710–15.

    CAS  Google Scholar 

  23. L. Kaufman and M. Cohen:J. Metals, 1956, vol. 8, pp. 1393–1401; also:Trans. AIME, 1956, vol. 206, pp. 1393–1401.

    CAS  Google Scholar 

  24. L. Kaufman and M. Cohen:Progr. Met. Phys., 1958, vol. 7, pp. 165–246.

    Article  CAS  Google Scholar 

  25. M. M. Rao and P. G. Winchell:Trans. TMS-AIME, 1967, vol. 239, pp. 956–60.

    CAS  Google Scholar 

  26. M. J. Bibby and J. E. Parr:J. Iron Steel Inst., 1964, vol. 203, pp. 100–03.

    Google Scholar 

  27. J. Woodilla, P. G. Winchell, and M. Cohen:Trans. TMS-AIME, 1959, vol. 215, pp. 849–51.

    CAS  Google Scholar 

  28. K. R. Kinsman and J. C. Shyne:Acta Met., 1967, vol. 15, pp. 1527–43.

    Article  CAS  Google Scholar 

  29. T. K. Sanyal and R. Brook:Met. Sci., 1975, vol. 9, pp. 135–39.

    Article  CAS  Google Scholar 

  30. G. White and R. Brook:Met. Sci., 1977, vol. 11, pp. 152–55.

    Article  CAS  Google Scholar 

  31. R. G. Davies and C. L. Magee:The Second International Conference on the Strength of Metals and Alloys, vol. 3, pp. 817–21, ASM, Metals Park, OH, 1970.

    Google Scholar 

  32. L. Magee and R. G. Davies:Acta Met., 1972, vol. 20, pp. 1031–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

P. J. FISHER, formerly with the University of New South Wales

D. J. H. CORDEROY, formerly with the University of New South Wales

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, P.J., Corderoy, D.J.H. The role of thermal stabilization in martensite transformations. Metall Trans A 10, 1421–1427 (1979). https://doi.org/10.1007/BF02812006

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02812006

Keywords

Navigation