Skip to main content
Log in

Recombinant human monoclonal antibodies

Basic principles of the immune system transferred toE. coli

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

To produce human monoclonal antibodies in bacteria, a gene repertoire of IgM variable regions was isolated from human peripheral B lymphocytes by the polymerase chain reaction. Alternatively, synthetic antibody genes with random hypervariable regions are being generated that may provide libraries of even higher complexity. For the selection of specific monoclonal antibodies from these libraries, we have developed twoE. coli vector systems that facilitate the surface display of an antibody physically linked to its own gene. The phagemid pSEX encodes a fusion protein of an antigen binding domain (Fv-antibody) with the docking protein (pIII) of filamentous phages. Specific antibody genes can therefore be enriched by antigen affinity chromatography. The plasmid pAP1 encodes a fusion protein of an Fv-antibody with a bacterial cell-wall protein. Bacteria carrying this plasmid express functional Fv-antibodies tightly bound to their surface. This should enable the selection of single cells with a fluorescence-assisted cell sorter (FACS) using labeled antigen or by adsorption to immobilized antigen.

These vectors permit three major principles of the antibody response to be mimicked inE. coli:

  1. 1.

    Generation of a highly complex antibody repertoire;

  2. 2.

    Clonal selection procedures for library screening; and

  3. 3.

    The possibility of increasing a given affinity by repeated rounds of mutation and selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courtenay-Luck, N. S., Epenetos, A. A., Moore, R., Larche, M., Pectasides, D., Dhokia, B., and Ritter, M. A. (1986) Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms.Cancer Res. 46, 6489–6493.

    PubMed  CAS  Google Scholar 

  2. Winter, G. and Milstein, C. (1991) Man made antibodies.Nature 349, 293–299.

    Article  PubMed  CAS  Google Scholar 

  3. Skerra, A. and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment inEscherichia coli.Science 240, 1038–1041.

    Article  PubMed  CAS  Google Scholar 

  4. Better, M., Chang, C. P., Robinson, R. R., and Horowitz, A. H. (1988)Escherichia coli secretion of an active chimeric antibody fragment.Science 240, 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  5. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M. S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Haber, E., Crea, R., and Oppermann, H. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced inEscherichia coli.Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  6. Dübel, S., Breitling, F., Seehaus, T., and Little, M. (1992) Generation of a human IgM expression library inE. coli.Meth. Mol. Cell Biol. 3, 47–52.

    Google Scholar 

  7. Kilmartin, J. V., Wright, B., and Milstein, C. (1982) Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line.J. Cell Biol. 93, 576–582.

    Article  PubMed  CAS  Google Scholar 

  8. Breitling, F. and Little, M. (1986) Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/34, DM1A, and DM1B.J. Mol. Biol. 189, 367–370.

    Article  PubMed  CAS  Google Scholar 

  9. Little, M., Breitling, F., Seehaus, T., Dübel, S., and Klewinghaus, I. (1991) Facile production of human monoclonal antibodies.Curr. Opin. Therap. Pat. 1, 1515,1516.

    Google Scholar 

  10. Seehaus, T., Breitling, F., Dübel, S., Klewinghaus, I., and Little, M. (1992) A vector for the removal of deletion mutants from antibody libraries.Gene 114, 235–237.

    Article  PubMed  CAS  Google Scholar 

  11. Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening.Gene 104, 147–153.

    Article  PubMed  CAS  Google Scholar 

  12. Dübel, S., Breitling, F., Klewinghaus, I., and Little, M. (1992) Regulated secretion and purification of recombinant antibodies inE. coli.Cell Biophys. 21, 69–79.

    PubMed  Google Scholar 

  13. Fuchs, P., Breitling, F., Dübel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface ofE. coli: fusion to a peptidoglycan associated lipoprotein.Bio/Technology 9, 1369–1372.

    Article  PubMed  CAS  Google Scholar 

  14. Kang, A. S. T., Jones, T. M., and Burton, D. R. (1991) Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries.Proc. Natl. Acad. Sci. USA 88, 11,120–11,123.

    CAS  Google Scholar 

  15. Barbas, III, C. F., Bain, J. D., Hoekstra, D. M., and Lerner, R. A. (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem.Proc. Natl. Acad. Sci. USA 89, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  16. Sulkowski, E. (1985) Purification of proteins by IMAC.Trends in Biotechnology 3, 1–7.

    Article  CAS  Google Scholar 

  17. Lilius, G., Person, M., Bülow, L., and Mosbach, K. (1991) Metal affinity recipitation of proteins carrying genetically attached polyhistidine tails.Eur. J. Biochem. 198, 499–504.

    Article  PubMed  CAS  Google Scholar 

  18. Evan, G. I., Lewis, G. K., Ramsay, G., and Bishop, M. (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product.Mol. Cell. Biol. 5, 3610–3616.

    PubMed  CAS  Google Scholar 

  19. Neuberger, M. S. (1983) Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells.EMBO J. 2, 1372–1378.

    Google Scholar 

  20. Nitta, T., Sato, K., Yagita, H., Okumura, K., and Ishii, S. (1990) Preliminary trial of specific targeting therapy against malignant glioma.Lancet 335, 368–371.

    Article  PubMed  CAS  Google Scholar 

  21. Chaudhary, V. K., Queen, C., Junghans, R. P., Waldmann, T. A., FitzGerald, D. J., and Pastan, I. (1989) A recombinant immunotoxin consisting of two antibody variable domains fused toPseudomonas exotoxin.Nature 339, 394–397.

    Article  PubMed  CAS  Google Scholar 

  22. Rybak, S. M., Hoogenboom, H. R., Meade, H. M., Raus, J. C. M., Schwartz, D., and Youle, R. J. (1992) Humanization of immunotoxins.Proc. Natl. Acad. Sci. USA 89, 3165–3169.

    Article  PubMed  CAS  Google Scholar 

  23. Bagshawe, K. D., Springer, C. J., Searle, F., Antoniw, P., Sharma, S. K., Melton, R. G., and Sherwood, R. F. (1988) A cytotoxic agent can be generated selectively at cancer sites.Br. J. Cancer 58, 700–703.

    PubMed  CAS  Google Scholar 

  24. Meyer D. L., Jungheim, L. N., Mikolajczyk, S. D., Shepherd, T. A., Starling, J. J., and Ahlem, C. N. (1992) Preparation and characterization of a beta-lactamase-Fab' conjugate for the site-specific activation of oncolytic agents.Bioconjug. Chem. 3, 42–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, P., Dübel, S., Breitling, F. et al. Recombinant human monoclonal antibodies. Cell Biophysics 21, 81–91 (1992). https://doi.org/10.1007/BF02789480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789480

Index Entries

Navigation