Skip to main content
Log in

Self-reactive B cells in nonautoimmune and autoimmune mice

  • Foreword
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The defining feature of autoimmune disease is the presence of specific autoreactive lymphocytes. Systemic lupus erythematosus (SLE), for example, is characterized by a discrete set of antibodies directed to nuclear antigens; these include autoantibodies to DNA and snRNPs that are diagnostic for SLE. The murine model of SLE, theMRL-lpr/lpr mouse, likewise, has a similar autoantibody profile. To understand how SLE-associated autoantibodies are regulated in healthy individuals and to identify mechanisms underlying their expression in autoimmunity, we have developed a transgenic (tg) model system using multiple sets of tgs. The development of B cells bearing these tgs has been studied in B ALB/c andMRL-lpr/lpr autoimmune backgrounds, and the relative fates of anti-ssDNA and anti-dsDNA tg B cells when they are a part of a diverse as well as monoclonal B cell repertoire have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metcalf ES, Klinman NR:In vitro tolerance induction of neonatal murine B-cells. J Exp Med 1976; 143:1327–1340.

    Article  PubMed  CAS  Google Scholar 

  2. Metcalf ES, Klinman NR:In vitro tolerance induction of bone marrow cells: amarkerfor B-cell maturation. J Immunol 1977;118:2111–2116.

    PubMed  CAS  Google Scholar 

  3. Pike BL, Abrams J, Nossal, GJV: Clonal anergy: inhibition of antigen-driven proliferation among single B lymphocytes from tolerant animals, and partial breakage of anergy by mitogens. Eur J Immunol 1983;13:214–220.

    Article  PubMed  CAS  Google Scholar 

  4. Sidman CL, Unanue ER: Receptor-mediated inactivation of early B lymphocytes. Nature 1975;257: 149–151.

    Article  PubMed  CAS  Google Scholar 

  5. Nemazee D, Buerki K: Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras. Proc Natl Acad Sci USA 1990; 86:8039–8043.

    Article  Google Scholar 

  6. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, et al.: Altered iminunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1988;334: 676–682.

    Article  PubMed  CAS  Google Scholar 

  7. Hartley SB, Crosbie J, Brink R, Kantor AB, Basten A, Goodnow CC: Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 1991;353:765–769.

    Article  PubMed  CAS  Google Scholar 

  8. Erikson J, Radic MZ, Camper SA, Hardy RR, Carmack C, Weigert M: Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature 1991;349: 331–334.

    Article  PubMed  CAS  Google Scholar 

  9. Tan EM, Chan EKL, Sullivan KF, Rubin RL: Antinuclear antibodies (ANAs): Diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol 1988;47:121–141.

    Article  PubMed  CAS  Google Scholar 

  10. Theofilopoulos AN, Dixon FJ: Murine models of systemic lupus erythematosus. Adv Immunol 1985; 37:269–390.

    PubMed  CAS  Google Scholar 

  11. Izui S, Kelley VE, Masuda K, Yoshida H, Roths JB, Murphy ED: Induction of various autoantibodies by mutant gene lpr in several strains of mice. J Immunol 1984;133:227–233.

    PubMed  CAS  Google Scholar 

  12. Madaio MP, Carlson J, Cataldo J, Ucci A, Migliorini P, Pankewycz O: Murine monoclonal anti-DNA antibodies bind directly to glomerular antigens and form immune deposits. J Immunol 1987;138: 2883–2889.

    PubMed  CAS  Google Scholar 

  13. Ohnishi K, Ebling FM, Mitchell B, Singh RR, Hahn BH, Tsao BP: Comparison of pathogenic and non-pathogenic murine antibodies to DNA: antigen binding and structural characteristics. Int Immunol 1994;6:817–830.

    Article  PubMed  CAS  Google Scholar 

  14. Madaio MP, Hodder S, Schwartz RS, Stollar BD: Responsiveness of autoimmune and normal mice to nucleic acid antigens. J Immunol 1984;132:872–876.

    PubMed  CAS  Google Scholar 

  15. Radic MZ, Weigert M: Genetic and structural evidence for antigen selection of anti-DNAantibodies. Annu Rev Immunol 1994;12:487–520.

    Article  PubMed  CAS  Google Scholar 

  16. Radic MZ, Mascelli MA, Erikson J, Shan H, Weigert M: Ig H and L chain contributions to autoimmune specificites. J Immunol 1991;146: 176–182.

    PubMed  CAS  Google Scholar 

  17. Roark JH, Kuntz CL, Nguyen K-A, Caton AJ, Erikson J: Breakdown of B-cell tolerance in a mouse model of SLE. J Exp Med 1995;181:1157–1167.

    Article  PubMed  CAS  Google Scholar 

  18. Ibrahim SM, Weigert M, Basu C, Erikson J, Radic MZ: Light chain contribution to specificity in anti-DNA antibodies. J Immunol 1995; 155:3223–3233.

    PubMed  CAS  Google Scholar 

  19. Cyster JG, Hartley SB, Goodnow CC: Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 1994;371:389–395.

    Article  PubMed  CAS  Google Scholar 

  20. Cyster JG, Goodnow CC: Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B-cell fate. Immunity 1995;3:691–701.

    Article  PubMed  CAS  Google Scholar 

  21. Nguyen KAT, Mandik L, Bui A, Kavaler J, Norvell A, Monroe JG, et al.: Characterization of anti-ssDNA B-cells in a non-autoimmune background. J Immunol, in press.

  22. Fulcher DA, Basten A: Reduced life span of anergic self-reactive B-cells in a double-transgenic model. J Exp Med 1994;179:125–134.

    Article  PubMed  CAS  Google Scholar 

  23. Cyster JG, Hartley SB, Goodnow CC: Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 1993;371:389–395.

    Article  Google Scholar 

  24. Cyster JG, Goodnow CC: Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B-cell fate. Immunity 1995;3:691–701.

    Article  PubMed  CAS  Google Scholar 

  25. Gay D, Saunders T, Camper S, Weigert M: Receptor editing: An approach by autoreactive B-cells to escape tolerance. J Exp Med 1993;177:999–1008.

    Article  PubMed  CAS  Google Scholar 

  26. Radic MZ, Erikson J, Litwin S, Weigert M: B lymphocytes may escape tolerance by revising their antigen receptors. J Exp Med 1993;177:1165–1173.

    Article  PubMed  CAS  Google Scholar 

  27. Tiegs SL, Russell DM, Nemazee D: Receptor editing in self-reactive bone marrow B-cells. J Exp Med 1993;177:1009–1020.

    Article  PubMed  CAS  Google Scholar 

  28. Chen C, Nagy Z, Radic MZ, Hardy RR, Huszar D, Camper SA, et al.: The site and stage of anti-DNA B-cell deletion. Nature 1995;373: 252–255.

    Article  PubMed  CAS  Google Scholar 

  29. Iliev A, Spatz L, Ray S, Diamond B: Lack of allelic exclusion permits autoreactive B-cells to escape deletion. J Immunol 1994; 153:3551–3556.

    PubMed  CAS  Google Scholar 

  30. Tsao BP, Chow A, Cheroutre H, Song YW, McGrath ME, Kroneberg M: B-cells are anergic in transgenic mice that express IgM anti-DNA antibodies. Eur J Immunol 1993;23:2332–2339.

    Article  PubMed  CAS  Google Scholar 

  31. Roark JH, Bui A, Nguyen KAT, Mandik L, Erikson J: Persistance of functionally compromised antidsDNA B-cells in the periphery of non-autoimmune mice. Int Immunol, in press.

  32. Mandik-Nayak L, Bui A, Noorchasm H, Eaton A, Erikson J: Regulation of anti-double-stranded B cells in non-autoimmune mice: localization to the T-B interface of the splenic follicle. J Exp Med 1997;186:1257–1267.

    Article  PubMed  CAS  Google Scholar 

  33. Fulcher DA, Basten A: Reduced life span of anergic self-reactive B-cells in adouble-transgenic model. J Exp Med 1994;179:125–134.

    Article  PubMed  CAS  Google Scholar 

  34. Chan EYT, MacLennan ICM: Only a small proportion of splenic B-cells in adults are short-lived virgin cells. Eur J Immunol 1993; 23:357–363.

    Article  PubMed  CAS  Google Scholar 

  35. Fulcher DA, Lyons AB, Korn SL, Cooke MC, Koleda C, Parish C, et al.: The fate of self-reactive B-cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J Exp Med 1996;183:2313–2328.

    Article  PubMed  CAS  Google Scholar 

  36. Cyster J: Signaling thresholds and interclonal competition in preimmune B-cell selection. Immunol Rev 1997;156:87–101.

    Article  PubMed  CAS  Google Scholar 

  37. Jacobson BA, Rothstein TL, Marshak-Rothstein A: Unique site of IgG2a and rheumatoid factor production in MRL/lpr mice. Immunol Rev 1997;156:103–110.

    Article  PubMed  CAS  Google Scholar 

  38. Jacobson BA, Panka DJ, Nguyen KAT, Erikson J, Abbas AK, Marshak-Rothstein A: Anatomy of autoantibody production: Dominant localization of antibody-producing cells to T cell zones in Fas-deficient mice. Immunity 1995; 3:509–519.

    Article  PubMed  CAS  Google Scholar 

  39. Rathmell JC, Cooke MP, Ho WY, Grein J, Townsend SE, Davis MM, et al.: CD95 (Fas)-dependent elimination of self-reactive B-cells upon interaction with CD4+ T cells. Nature 1995;376:181–184.

    Article  PubMed  CAS  Google Scholar 

  40. Rothstein TL, Wang JKM, Panka DJ, Foote LC, Wang Z, Stanger B, et al.: Protection against Fas-dependent Thl-mediated apoptosis by antigen receptor engagement in B-cells. Nature 1995;374:163–165.

    Article  PubMed  CAS  Google Scholar 

  41. Hagman J, Lo D, Doglio LT, Hackett J, Rudin CM, Haasch D, et al.: Inhibition of immunoglobulin gene rearrangement by the expression of a 12 transgene. J Exp Med 1989;169:1911–1929.

    Article  PubMed  CAS  Google Scholar 

  42. Shinkai Y, Rathbun G, Lam KP, Oltz E, Stewart V, Mendelsohn M, et al.: Rag-2 deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992;68:855–867.

    Article  PubMed  CAS  Google Scholar 

  43. Spanopoulou E, Roman CAJ, Corcoran LM, Schlissel MS, Silver DP, Nemazee D, et al.: Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev 1994;8:1030–1042.

    Article  PubMed  CAS  Google Scholar 

  44. Chen C, Radic MZ, Erikson J, Camper SA, Litwin S, Hardy RR, et al.: Deletion andediting of B-cells that express antibodies to DNA. J Immunol 1994;152:1970–1982.

    PubMed  CAS  Google Scholar 

  45. Hang L, Theofilopoulos AN, Balderas RS, Francis SJ, Dixon FJ: The effect of thymectomy on lupus-prone mice. J Immunol 1984;132:1809–1813.

    PubMed  CAS  Google Scholar 

  46. Jabs DA, Burek CL, Hu Q, Kuppers RC, Lee B, Pendergast RA: Anti-CD4 monoclonal antibody therapy suppresses autoimmune disease inMRL/Mp-lpr/lpr mice. Cell Immunol 1992;141:496–507.

    Article  PubMed  CAS  Google Scholar 

  47. Wofsy D, Ledbetter JA, Hendler PL, Seaman WE: Treatment of murine lupus with monoclonal anti-T cell antibody. J Immunol 1985;134:852–857.

    PubMed  CAS  Google Scholar 

  48. Offen D, Spatz L, Escowitz H, Factor S, Diamond B: Induction of tolerance to an IgG autoantibody. Proc Natl Acad Sci USA 1992;89:8332–8336.

    Article  PubMed  CAS  Google Scholar 

  49. Eisenberg RA, Craven SY, Warren RW, Cohen PL: Stochastic control of anti-sm autoantibodies inMRL/Mp-pr/lpr mice. J Clin Invest 1987;80:691–697.

    PubMed  CAS  Google Scholar 

  50. Hardin JA: The lupus autoantigens and the pathogenesis of systemiclupus erythematosus. Arthritis Rheum 1986;29:457–460.

    Article  PubMed  CAS  Google Scholar 

  51. Roark JH, Kuntz CL, Nguyen KAT, Mandik L, Cattermole M, Erikson J: B-cell selection and allelic exclusion of an anti-DNA immunoglobulin transgene inMRL-lpr/lpr mice. J Immunol 1995;154:4444–4455.

    PubMed  CAS  Google Scholar 

  52. Diamond B, Katz JB, Paul E, Aranow C, Lustgarten D, Scharff MD: The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 1992;10:731–757.

    Article  PubMed  CAS  Google Scholar 

  53. Singer PA, Balderas RS, McEvilly RJ, Bobardt M, Theofilopoulos AN: Tolerance-related Vb clonal deletions in normal CD4-8-, TCRa/b+ and abnormallpr andgld cell populations. J Exp Med 1989; 170:1869–1877.

    Article  PubMed  CAS  Google Scholar 

  54. Herron LR, Eisenberg RA, Roper E, Kakkanaiah VN, Cohen PL, Kotzin BL: Selection of the T cell receptor repertoire in lpr mice. J Immunol 1993;151:3450–3459.

    PubMed  CAS  Google Scholar 

  55. Rubio CF, Kench J, Russell DM, Yawger R, Nemazee D: Analysis of central B-cell tolerance in autoimmune-prone MRL/lpr mice bearing autoantibody transgenes. J Immunol 1996;157:65–71.

    PubMed  CAS  Google Scholar 

  56. Rathmell JC, Goodnow CC: Effects of theLpr mutation on elimination and inactivation of self-reactive B-cells. J Immunol 1994;153: 2831–2842.

    PubMed  CAS  Google Scholar 

  57. Zhou T, Bluethmann H, Eldridge J, Brockhaus M, Berry K, Mountz JD: Abnormal thymocyte development and production of autoreactive T cells in T cell receptor transgenic autoimmune mice. J Immunol 1991;47:466–474.

    Google Scholar 

  58. Gillette-Ferguson I, Sidman CL: A specific intercellular pathway of apoptotic cell death is defective in the mature peripheral T cells of autoimmune lpr and gld mice. Eur J Immunol 1994;24:1181–1181.

    Article  PubMed  CAS  Google Scholar 

  59. Singer GG, Abbas AK: The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1994; 1:365–371.

    Article  PubMed  CAS  Google Scholar 

  60. Mandik L, Nguyen KAT, Erikson J: Fas receptor expression on Blineage cells. Eur J Immunol 1995;25:3148–3154.

    Article  PubMed  CAS  Google Scholar 

  61. Onel KB, Tucek-Szabo CL, Ashany D, Lacy E, Nikolic-Zugic J, Elkon KB: Expression and function of the murine CD95/FasR/APO-l receptor in relation to B-cell ontogeny. Eur J Immunol 1995; 25:2940–2947.

    Article  PubMed  CAS  Google Scholar 

  62. Drappa J, Brot N, Elkon KB: The Fas protein is expressed at high levels on CD4+CD8+ thymocytes and activated mature lymphocytes in normal mice but not in the lupus-prone strain MRL lpr/lpr. Proc Natl Acad Sci USA 1993; 90:10, 340–10,344.

    Google Scholar 

  63. Mariani SM, Matiba B, Armandola EA, Krammer PH: The Apo-I/Fas (CD95) receptor is expressed in homozygousMRL-lpr mice. Eur J Immunol 1994;24:3119–3123.

    Article  PubMed  CAS  Google Scholar 

  64. Kischkel FC, Hellbardt S, Pawlita M, Krammer PH, Peter ME: Cytotoxicity-dependant APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with receptor. EMBO J 1995;14:5579–5588.

    PubMed  CAS  Google Scholar 

  65. Taupin J-L, Tian Q, Kedersha N, Robertson M, Anderson P: The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death. Proc Natl Acad Sci USA 1995;92:1629–1633.

    Article  PubMed  CAS  Google Scholar 

  66. Gulbins E, Bissonnette R, Mahboubi A, Martin S, Nishioka W, Brunner T, Baier G, et al.: FAS-induced apoptosis is mediated via a ceramide-initiated RAS signal pathway. Immunity 1995; 2:341–351.

    Article  PubMed  CAS  Google Scholar 

  67. Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, et al.: Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1993; 177:1547–1552.

    Google Scholar 

  68. Su X, Zhou T, Wang Z, Yang P, Jope RS, Mountz JD: Defective expression of hematopoietic cell protein tyrosine phosphate (HCP) in lymphoid cells blocks Fasmediated apoptosis. Immunity 1995;2:353–362.

    Article  PubMed  CAS  Google Scholar 

  69. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–512.

    Article  PubMed  CAS  Google Scholar 

  70. Stanger BZ, Leder P, Lee T-H, Kim E, Seed B: RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995;81:513–523.

    Article  PubMed  CAS  Google Scholar 

  71. Tian Q, Taupin J-L, Elledge S, Robertson M, Anderson P: Fasactivated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med 1995; 182:865–874.

    Article  PubMed  CAS  Google Scholar 

  72. Rothstein TL, Wang JKM, Panka DJ, Foote LC, Wang Z, Stanger B, et al.: Protection against Fasdependent Th1 -mediated apoptosis by antigen receptor engagement in B-cells. Nature 1995;374:163–165.

    Article  PubMed  CAS  Google Scholar 

  73. Rathmell JC, Goodnow CC: Effects of theLpr mutation on elimination and inactivation of self-reactive B-cells. J Immunol 1994;1153:2831–2842.

    Google Scholar 

  74. Chiou S-K, Tseng C-C, Rao L, White E: Functional complementation of the Adenovirus E1B 19-Kiladalton Protein with Bcl-2 in the inhibition of apoptosis in infected cells. J Virol 1995;68:87–97.

    Google Scholar 

  75. Itoh N, Tsujimoto Y, Nagata S: Effect of bcl-2 on Fas antigenmediated cell death. J Immunol 1993;151:621–627.

    PubMed  CAS  Google Scholar 

  76. Strasser A, Harris AW, Huang DCS, Krammer PH, Cory S: Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. The EMBOJ 1995;14:6136–6147.

    CAS  Google Scholar 

  77. Lacronique V, Mignon, A, Fabre M, Viollet B, Rouquet N, Molina T, et al.: Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nature Medicine 1996;2:80–86.

    Article  PubMed  CAS  Google Scholar 

  78. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S, et al.: Enforced bcl-2 expression in B-lymphoid cells prolongs antibody response and elicits autoimmune disease. Proc Natl Acad Sci USA 1991;88:8661–8665.

    Article  PubMed  CAS  Google Scholar 

  79. McDonnell TJ, Deane N, Platt FM, Nunez G, Jeager U, McKearn JP, et al.: Bcl-2-immunoglobin trangenic mice demonsrtate extended B-cell survival adn follicular lymphoproliferation. Cell 1989; 57:79–88.

    Article  PubMed  CAS  Google Scholar 

  80. Cory S: Regulation of lymphocyte survival by the Bcl-2 gene family. Annu Rev Immunol 1995; 13:513–543.

    Article  PubMed  CAS  Google Scholar 

  81. Katsumata M, Seigel R, Louie D, Miyashita T, Tsujimoto Y, Nowell P, et al.: Differential effects of Bcl-2 on T and B-cells in trangenic mice. Proc Natl Acad Sci USA 1992;89:11376–11380.

    Article  PubMed  CAS  Google Scholar 

  82. Hartley SB, Cooke MP, Fulcher DA, Harris AW, Cory S, Basten A, et al.: Elimination of self-reactive B-lymphocytes proceeds in two stages: arrested development and cell death. Cell 1993;72:325–335.

    Article  PubMed  CAS  Google Scholar 

  83. Nisitani S, Tsubata T, Murakami M, Okamato M, Honjo T: The bcl2 gene product inhibits clonal deletion of self-reactive B lymphocytes in the periphey but not in the bone marrow. J Exp Med 1993;178: 247–1254.

    Article  Google Scholar 

  84. Mandik L, Katsumata M, Erikson J: Effects of altered Bcl-2 expression on B lymphocyte expression. Annl NY Acad Sci 1997;815:40–54.

    Article  CAS  Google Scholar 

  85. Kavaler J, Caton AJ, Staudt LM, Schwartz D, Gerhard W: A set of closely related antibodies dominates the primary antibody response to the antigenic site CB of the A/PR/8/34 influenza virus hemagglutinin. J Immunol 1990; 145:2312–2321.

    PubMed  CAS  Google Scholar 

  86. Clarke SH, Huppi K, Ruezinsky D, Staudt L, Gerhard W, Weigert M: Inter-and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med 1985;161:687–704.

    Article  PubMed  CAS  Google Scholar 

  87. Stark S, Caton AJ: Antibodies that are specific for a single amino acid interchange in a protein epitope use structurally distinct variable regions. J Exp Med 1991;174:613–624.

    Article  PubMed  CAS  Google Scholar 

  88. Caton A, Swartzentruber J, Kuhl A, Carding S, Stark S: Activation and negative selection of functionally distinct subsetsof antibody-secreting cells by influenza hemagglutinin as a viral and a neo-self antigen. J Exp Med 1996;183:13–26.

    Article  PubMed  CAS  Google Scholar 

  89. Cerosoli DM, Riley MP, Shih FF, Caton AJ: Genetic basis for T cell recognition of a major histocompatibility complex class II-restricted neo-self peptide. J Exp Med 1995;182:1327–1336.

    Article  Google Scholar 

  90. Shlomchik M, Mascelli M, Shan H, Radic MZ, Pisetsky D, Marshak-Rothstein A, et al.: Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med 1990; 171:265–292.

    Article  PubMed  CAS  Google Scholar 

  91. Marion TN, Bothwell ALM, Briles DE, Janeway CA Jr: IgG anti-DNA autoantibodies within an individual autoimmune mouse are the products of clonal selection. J Immunol 1989;142:4269–4274.

    PubMed  CAS  Google Scholar 

  92. Mohan C, Adams S, Stanik V, Datta SK: Nucleosome: A major immunogen for pathagenic autoantibody-inducing T cells of lupus. J Exp Med 1993;177:1367–1381.

    Article  PubMed  CAS  Google Scholar 

  93. Lefeber WP, Norris DA, Ryan SR, Huff JC, Lee LA, Kubo M, et al.: Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J Clin Invest 1984;74: 1545–1551.

    PubMed  CAS  Google Scholar 

  94. Golan TD, Elkon KB, Gharavi AE, Krueger JG: Enhanced membrane binding of autoantibodies to cultured keratinocytes of SLE patients after UVB/UVA irradation. J Clin Invest 1992;90:1067–1076.

    Article  PubMed  CAS  Google Scholar 

  95. Casciola-Rosen LA, Anhalt G, Rosen A: Autoantigens targeted in systematic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994; 179:1317–1330.

    Article  PubMed  CAS  Google Scholar 

  96. Rumore PM, Steinman CR: Endogenous circulating DNA in systematic lupus erythematosus, occurance as mutlimeric complexes bound to histone. J Clin Invest 1990;86:69–74.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Erikson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikson, J., Mandik, L., Bui, A. et al. Self-reactive B cells in nonautoimmune and autoimmune mice. Immunol Res 17, 49–61 (1998). https://doi.org/10.1007/BF02786430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786430

Key words

Navigation