Skip to main content
Log in

Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Flavonoids are natural compounds found in food items of plant origin. The study examined systematically the interaction of structurally diverse dietary flavonoids with trace metal ions and the potential impact of dietary flavonoids on the function of intestinal cells. Spectrum analysis was first performed to determine flavonoid-metal interaction in the buffer. Among the flavonoids tested, genistein, biochanin-A, naringin, and naringenin did not interact with any metal ions tested. Members of the flavonol family, quercetin, rutin, kaempferol, flavanol, and catechin, were found to interact with Cu(II) and Fe(III). On prolonged exposure, quercetin also interacted with Mn(II). Quercetin at 1:1 ratio to Cu(II) completely blocked the Cu-dependent color formation from hematoxylin. When quercetin was added to the growth medium of cultured human intestinal cells, Caco-2, the level of metal binding antioxidant protein, metallothionein, decreased. The effect of quercetin on metallothionein was dose and time-dependent. Genistein and biochanin A, on the contrary, increased the level of metallothionein. The interaction between dietary flavonoids and trace minerals and the effect of flavonoids on metallothionein level imply that flavonoids may affect metal homeostasis and cellular oxidative status in a structure-specific fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. L. Hertog, P. C. H. Hollman, and M. B. Katan,J. Agric. Food Chem. 40, 2379–2383 (1992).

    Article  CAS  Google Scholar 

  2. E. D. Walter,J. Am. Chem. Soc. 63, 3273–3276 (1941).

    Article  CAS  Google Scholar 

  3. A. C. Eldridge,J. Agric. Food Chem. 30, 353–355 (1982).

    Article  CAS  Google Scholar 

  4. H.-J. Wang and P. A. Murphy,J. Agric. Food. Chem. 42, 1666–1673 (1994).

    Article  CAS  Google Scholar 

  5. W. S. Pierpoint,Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships, V. Cody, E. Middleton, and J. B. Harborne, eds., Alan R. Liss, New York, pp. 125–140 (1986).

    Google Scholar 

  6. B. Havsteen,Biochem. Pharmacol. 32, 1141–1148 (1983).

    Article  PubMed  CAS  Google Scholar 

  7. E. Middleton and C. Kandaswami,The Flavonoids: Advances in Research Since 1986, J. B. Harborne ed., Chapman & Hall, London, pp. 619–652 (1993).

    Google Scholar 

  8. I. B. Afanas’ev, A. I. Dorozhko, A. V. Brodskii, V. A. Kostyuk, and A. I. Potapovitch,Biochem. Pharmacol. 38, 1763–1769 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, et al.,Biochem. Pharmacol 45, 13–19 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. A. Rahman Shahabuddin, S. M. Hadi, and J. H. Parish,Carcinogenesis 11, 2001–2003 (1990).

    Article  PubMed  Google Scholar 

  11. A. Said Ahmad, F. Fazal, A. Rahman, S. M. Hadi, and J. H. Parish,Carcinogenesis 13, 605–608 (1992).

    Article  CAS  Google Scholar 

  12. J. L. Greger and B. J. Lyle,J. Nutr. 118, 52–60 (1988).

    PubMed  CAS  Google Scholar 

  13. I. R. Record, J. K. Mclnemey, and I. E. Dreosti,Biol. Trace Element Res. 53, 27–43 (1996).

    CAS  Google Scholar 

  14. R. A. DiSilvestro and E. D. Harris,Biochem. Pharmacol. 32, 343–346 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. J. H. R. Kagi and B. L. Vallee,J. Biol. Chem. 235, 3460–3465 (1960).

    PubMed  CAS  Google Scholar 

  16. J. Kay, A. Cryer, B. M. Darke, P. Kille, W. E. Lees, C. G. Norey, et al.,Int. J. Biochem. 23, 1–5 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. M. Karin, E. P. Slater, and H. R. Herschman,J. Cell Physiol. 106, 63–74 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. D. M. Durnam and R. D. Palmiter,J. Biol. Chem. 256, 5712–5716 (1981).

    PubMed  CAS  Google Scholar 

  19. R. I. Richards, A. Heguy, and M. Karin,Cell 37, 263–272 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. D. M. Templeton and M. G. Cherian,Methods Enzymol. 205, 11–24 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. B. A. Masters, E. J. Kelly, C. J. Quaife, R. L. Brinster, and R. D. Palmiter,Proc. Natl. Acad. Sci. USA 91, 584–588 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. T.-Y. Li, A. J. Kraker, C. F. Shaw III, and D. H. Petering,Proc. Natl. Acad. Sci. USA 77, 6334–6338 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. J. E. Churchich, G. Scholz, and F. Kwok,Biochim. Biophys. Acta 996, 181–186 (1989).

    PubMed  CAS  Google Scholar 

  24. J. Zeng, B. L. Vallee, and J. H. R. Kagi,Proc. Natl. Acad. Sci. USA 88, 9984–9988 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. M. A. Schwarz, J. S. Lazo, J. C. Yalowich, I. Reynolds, V. E. Kagam, V. Tyurin, et al,J. Biol. Chem. 269, 15,238–15,243 (1994).

    CAS  Google Scholar 

  26. J. S. Lazo, Y Kondo, D. Dellapiazza, A. E. Michalska, K. H. A. Choo, and B. P. Pitt,J. Biol. Chem. 270, 5506–5510 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. H. Zheng, J. Liu, Y. Liu, and C. D. Klaassen,Toxicol. Lett. 87, 139–145 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. A. E. El-Askalany and A. M. A. El-Magd,Chem. Pharm. Bull. 43, 1791,1792 (1995).

    PubMed  Google Scholar 

  29. M. Pinto, S. Robine-Leon, M.-D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, et al,Biol. Cell 47, 323–330 (1983).

    Google Scholar 

  30. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt,Gastroenterology 96, 736–749 (1989).

    PubMed  CAS  Google Scholar 

  31. J. Karlsson, S.-M. Kuo, J. Ziemniak, and P. Artursson,Br. J. Pharmacol. 110, 1009–1016 (1993).

    PubMed  CAS  Google Scholar 

  32. D. L. Eaton and B. F. Toal,Toxicol Appl. Pharmacol. 66, 134–142 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. S.-M. Kuo, Y. Kondo, J. M. DeFilippo, M. S. Ernstoff, R. R. Bahnson, and J. S. Lazo,Toxicol. Appl. Pharmacol. 125, 104–110 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. A. Negre-Salvayre, A. Affany, C. Hariton, and R. Salvayre,Pharmacology 42, 262–272 (1991).

    PubMed  CAS  Google Scholar 

  35. J. Galvez, J. P. De La Cruz, A. Zarzuelo, F. S. De Medina, Jr., J. Jimenez, and F. S. De La Cuesta,Gen. Pharmacol. 25, 1237–1241 (1994).

    PubMed  CAS  Google Scholar 

  36. I. R. Record, I. E. Dreosti, and J. K. McInerney,J. Nutr. Biochem. 6, 481–485 (1995).

    Article  CAS  Google Scholar 

  37. N. Cotelle, J.-L. Bernier, J. P. Catteau, J. Pommery, J.-C. Wallet, and E. M. Gaydou,Free Radical. Biol. Med. 20, 35–43 (1996).

    Article  CAS  Google Scholar 

  38. H. Wei, R. Bowen, Q. Cai, S. Barnes, and Y. Wang,Proc. Soc. Exp. Biol. Med. 208, 124–130 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, SM., Leavitt, P.S. & Lin, CP. Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol Trace Elem Res 62, 135–153 (1998). https://doi.org/10.1007/BF02783967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783967

Index entries

Navigation