Skip to main content
Log in

The pH dependence of siliconiron interaction in rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Harris, Iron-copper interactions: some new revelations,Nutr. Rev. 52, 311–319 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. X. Jia, R. J. Emerick, and H. Kayongo-Male, Biochemical interactions among silicon, iron and ascorbic acid in the rat,Biol. Trace Elem. Res., this issue.

  3. W. R. Humphries, M. Phillippo, B. W. Young, and I. Bremner, The influence of dietary iron and molybdenum on copper metabolism in calves,Brit. J. Nutr. 49, 77–86 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. J. T. Salonen, K. Nyyssonen, H. Korpola, J. Tuomillehto, R. Seppanen, and R. Salonen, High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men,Circulation 86, 803–811 (1992).

    PubMed  CAS  Google Scholar 

  5. J. L. Sullivan, Iron and the sex difference in heart disease risk,Lancet 1, 1293–1294 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. G. K. Davis and W. Mertz, Copper, inTrace Elements in Human and Animal Nutrition, W. Mertz, ed., 5th ed., Academic Press, San Diego, CA (1987).

    Google Scholar 

  7. K. G. D. Allen, S. Kim, and S. D. Clarke, Dietary copper (Cu) deficiency increases hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and mRNA level,FASEB J. 9, A733 (1995).

    Google Scholar 

  8. R. K. Iler,The Chemistry of Silica, John Wiley & Sons, New York (1979).

    Google Scholar 

  9. L. L. Olson and C. R. O’Melia, The interactions of Fe(III) with Si(OH)4,J. Inorg. Nuclear Chem. 53, 1977–1985 (1973).

    Article  Google Scholar 

  10. R. J. Emerick and H. Kayongo-Male, Interactive effects of dietary silicon, copper, and zinc in the rat,J. Nutr. Biochem. 1, 35–40 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. S. R. Stewart, R. J. Emerick, and H. Kayongo-Male, Silicon-zinc interactions and potential roles for dietary zinc and copper in minimizing silica urolithiasis in rats,J. Anim. Sci. 71, 946–954 (1993).

    PubMed  CAS  Google Scholar 

  12. A. D. Olson and W. B. Hamlin, A new method for serum iron and total iron-binding capacity by atomic absorption spectrophotometry,Clin. Chem. 15, 438–444 (1969).

    PubMed  CAS  Google Scholar 

  13. H. P. Lehmann, K. H. Schosinsky, and M. F. Beeler, Standardization of serum ceruloplasmin concentrations in international enzyme units with O-dianisidine dihydrochloride as substrate,Clin. Chem. 20, 1564–1567 (1974).

    PubMed  CAS  Google Scholar 

  14. SAS,SAS/STAT Guide for Personal Computers, Version 6 ed., SA Institute Inc., Gary, IN (1985).

    Google Scholar 

  15. Y. Charnot and G. Peres, Silicon, endocrine balances and mineral metabolism (calcium and magnesium), inBiochemistry of Silicon and Related Problems, G. Bendz and I. Lindqvist, eds., Plenum Press, New York (1978).

    Google Scholar 

  16. S. Kim, P. Y. Chao, and K. G. D. Allen, Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia,FASEB J. 6, 2467–2471 (1992).

    PubMed  CAS  Google Scholar 

  17. K. G. D. Allen and L. M. Klevay, Copper deficiency and cholesterol metabolism in the rat,Atherosclerosis 31, 259–271 (1978).

    Article  PubMed  CAS  Google Scholar 

  18. E. R. Morris, Iron, inTrace Elements in Human and Animal Nutrition, W. Mertz ed., 5th ed., Academic Press, San Diego, CA (1987).

    Google Scholar 

  19. E. B. Dawson, M. J. Frey, T. D. Moore, and W. J. McGanity, Relationship of metal metabolism to vascular disease mortality in Texas,Am. J. Clin. Nutr. 31, 1188–1197 (1978).

    PubMed  CAS  Google Scholar 

  20. P. G. Reeves, F. H. Nielsen, and G. C. Fahey, Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc writing committee on the reformulation of the AIN-76A rodent diet,J. Nutr. 123, 1939–1951 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, X., Emerick, R.J. & Kayongo-Male, H. The pH dependence of siliconiron interaction in rats. Biol Trace Elem Res 59, 113–122 (1997). https://doi.org/10.1007/BF02783236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783236

Index Entries

Navigation