Skip to main content
Log in

Long-lifetime metal-ligand complexes as luminescent probes for DNA

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We examined the intensity and anisotropy decays of DNA labeled with two ruthenium metalligand complexes, [Ru(bpy)2(dppz)]2+ and [Ru(phe)2(dppz)]2+. Both complexes display high emission anisotropies in the absence of rotational diffusion, making them suitable probes for rotational motions. When bound to DNA, these complexes display decay times as long as 294 ns, providing long-lived probes of DNA dynamics. The decay times of both complexes were rather insensitive to dissolved oxygen. We examined anisotropy decays of these complexes bound to B-form DNA. The anisotropy decays revealed correlation times near 10, 50, and several hundred nanoseconds, suggesting that these probes are sensitive to a wide range of DNA motions. The use of metalligand complexes should allow resolution of both the torsional and bending motions of DNA, the latter of which has been mostly inaccessible using shorter-lived fluorescent probes bound to DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

bpy:

2,2’-bipyridyl

bpy complex:

[Ru(bpy)2(dppz)]2+

DNA:

calf thymus DNA

dppz:

dipyrido[3,2-a’,2’,3’,-c]phenazine

EB:

ethidium bromide

MLC:

metal-ligand complexes

phe:

1,10-phenanthroline

phe complex:

[Ru(phe)2(dppz)]2+

TCSPC:

time-correlated single-photon counting

References

  1. D. P. Millar, R. J. Robbins, and A. H. Zewail (1980)Proc. Natl Acad. Sci. USA 77(10), 5593–5597.

    Article  PubMed  CAS  Google Scholar 

  2. D. P. Millar, R. J. Robbins, and A. H. Zewail (1982)J. Chem. Phys. 76(4), 2080–2094.

    Article  CAS  Google Scholar 

  3. D. Magde, M. Zappala, W. H. Knox, and T. M. Nordlund (1983)J. Phys. Chem. 87, 3286–3288.

    Article  CAS  Google Scholar 

  4. D. Genest, Ph. Wahl, M. Erard, M. Champagne, and M. Daune (1982)Biochimie 64, 419–427.

    Article  PubMed  CAS  Google Scholar 

  5. S. Georghiou (1977)Photochem. Photobiol. 26, 59–68.

    PubMed  CAS  Google Scholar 

  6. R. F. Steiner and Y. Kubota (1983) in R. F. Steiner (Ed.),Excited States of Biopolymers, Plenum Press, New York, pp. 203–254.

    Google Scholar 

  7. D. Xu, K. O. Evans, and T. M. Norlund (1994)SP1E Proc. 2137, 661–672.

    Article  CAS  Google Scholar 

  8. C. R. Guest, R. A. Hochstrasser, L. C. Sowers, and D. P. Millar (1991)Biochemistry 30, 3271–3279.

    Article  PubMed  CAS  Google Scholar 

  9. S. A. Allison and J. M. Schurr (1979)Chem. Phys. 41, 35–59.

    Article  CAS  Google Scholar 

  10. M. D. Barkley and B. H. Zimm (1979)J. Chem. Phys. 70(60), 2991–3007.

    Article  CAS  Google Scholar 

  11. J. Garcia de la Toree, S. Navarro, M. C. Lopez Martinez, F. G. Diaz, and J. J. Lopez Cascales (1994)Biophys. J. 67, 530–531.

    Google Scholar 

  12. J. Garcia de la Torre, S. Navarro, and M. C. Lopez Martinez (1994)Biophys. J. 66, 1573–1579.

    Article  Google Scholar 

  13. J. M. Schurr, B. S. Fujimoto, P. Wu, and L. Song (1992) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 3: Biochemical Applications, Plenum, New York, pp. 137–229.

    Google Scholar 

  14. D. P. Millar, K. M. Ho, and M. J. Aroney (1988)Biochemistry 27, 8599–8606.

    Article  PubMed  CAS  Google Scholar 

  15. E. Terpetschnig, H. Szmacinski, H. Malak, and J. R. Lakowicz (1995)Biophys. J. 68, 342–350.

    PubMed  CAS  Google Scholar 

  16. E. Terpetschnig, H. Szmacinski, and J. R. Lakowicz (1995)Anal. Biochem. 227, 140–147.

    Article  PubMed  CAS  Google Scholar 

  17. H. Szmacinski, E. Terpetschnig, and J. R. Lakowicz (1996)Biophys. Chem. 62, 109–120.

    Article  PubMed  CAS  Google Scholar 

  18. J. Ferguson and E. Krausz (1987)Inorg. Chem. 26, 1383–1386.

    Article  CAS  Google Scholar 

  19. J. L. Pogge and D. F. Kelley (1995)Chem. Phys. Lett. 238, 16–24.

    Article  CAS  Google Scholar 

  20. H. Riesen, Y. Gao, and E. Krausz (1994)Chem. Phys. Lett. 228, 610–615.

    Article  CAS  Google Scholar 

  21. J. K. Barton (1986)Science 233, 727–734.

    Article  PubMed  CAS  Google Scholar 

  22. Y. Jenkins, A. E. Friedman, N. J. Turro, and J. K. Barton (1992)Biochemistry 31, 10809–10816.

    Article  PubMed  CAS  Google Scholar 

  23. C. J. Murphy, M. R. Arkin, N. D. Ghatlia, S. Bossmann, N. J. Turro, and J. K. Barton (1994)Proc. Natl. Acad. Sci. USA 91, 5315–5319.

    Article  PubMed  CAS  Google Scholar 

  24. J. N. Demas and B. A. DeGraff (1992)Makromol. Chem. Macromol. Symp. 59, 35–51.

    CAS  Google Scholar 

  25. G. A. Reitz, J. N. Demas, B. A. DeGraff, and E. M. Stephens (1988)J. Am. Chem. Soc. 110, 5051–5059.

    Article  CAS  Google Scholar 

  26. F. N. Castellano, T. A. Heimer, M. T. Tandhasetti, and G. J. Meyer (1994)Chem. Mater. 6, 1041–1048.

    Article  CAS  Google Scholar 

  27. B. P. Sullivan, D. J. Salmon, and T. J. Meyer (1978)Inorg. Chem. 17, 3334–3341.

    Article  CAS  Google Scholar 

  28. M. YamActa, Y. Tanaka, Y. Yoshimoto, S. Kuroda, and I. Shimao (1992)Bull. Chem. Soc. Jpn. 65, 1006–1011.

    Article  Google Scholar 

  29. J. E. Dickeson and L. A. Summers (1970)Aust. J. Chem. 23, 1023–1027.

    Article  CAS  Google Scholar 

  30. E. Amouyal, A. Homsi, J.-C. Chambron, and J.-P. Sanvage (1990)J. Chem. Soc. Dalton Trans. 1841–1845.

  31. R. M. Hartshorn and J. K. Barton (1992)J. Am. Chem. Soc. 114, 5919–5925.

    Article  CAS  Google Scholar 

  32. D. J. S. Birch and R. E. Imhof (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 1. Techniques, Plenum, New York, pp. 1–45.

    Google Scholar 

  33. A. E. Friedman, J.-C. Chambron, J.-P. Sauvage, N. J. Turro, and J. K. Barton (1990)J. Am. Chem. Soc. 112, 4960–4962.

    Article  CAS  Google Scholar 

  34. R. M. Hartshorn and J. K. Barton (1992)J. Am. Chem. Soc. 114, 5919–5925.

    Article  CAS  Google Scholar 

  35. J. R. Lakowicz and G. Weber (1973)Biochemistry 12, 4161–4170.

    Article  PubMed  CAS  Google Scholar 

  36. I. Ashikawa, K. Kinostia, and A. Ikegami (1984)Biochim. Biophys. Acta 782, 87–93.

    PubMed  CAS  Google Scholar 

  37. I. Ashikawa, K. Kinosita, A. Ikegami, Y. Nishimura, M. Tsuboi, K. Watanabe, K. Iso, and T. Nakano (1983)Biochemistry 22, 6018–6026.

    Article  PubMed  CAS  Google Scholar 

  38. I. Ashikawa, T. Furono, K. Kinosita, A. Ikegami, H. Takahashi, and H. Akutsu (1984)J. Biol. Chem. 259(13), 8338–8344.

    PubMed  CAS  Google Scholar 

  39. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 2. Principles, Plenum, New York, pp. 241–305.

    Google Scholar 

  40. J. R. Lakowicz, I. Gryczynski, J. Kuśba, W. Wiczk, H. Szmacinski, and M. L. Johnson (1994)Photochem. Photobiol. 59, 16–29.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Robert F. Steiner upon his retirement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malak, H., Gryczynski, I., Lakowicz, J.R. et al. Long-lifetime metal-ligand complexes as luminescent probes for DNA. J Fluoresc 7, 107–112 (1997). https://doi.org/10.1007/BF02760501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760501

Key words

Navigation