Skip to main content
Log in

Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Earlier work by us as well as others has demonstrated that filamentous actin is mainly localized in the cortical surface of chromaffin cell. This F-actin network acts as a barrier to the chromaffin granules, impeding their contact with the plasma membrane. Chromaffin granules contain α-actinin, an anchorage protein that mediates F-actin association with these vesicles. Consequently, chromaffin granules crosslink and stabilize F-actin networks. Stimulation of chromaffin cell produces disassembly of F-actin and removal of the barrier. This interpretation is based on: (1) Cytochemical experiments with rhodamine-labeled phalloidin indicated that in resting chromaffin cells, the F-actin network is visualized as a strong cortical fluorescent ring; (2) Nicotinic receptor stimulation produced fragmentation of this fluorescent ring, leaving chromaffin cell cortical areas devoid of fluorescence; and (3) These changes are accompanied by a decrease in F-actin, a concomitant increase in G-actin, and a decrease in the F-actin associated with the chromaffin cell cytoskeleton (DNAse I assay). We also have demonstrated the presence in chromaffin cells of gelsolin and scinderin, two Ca2+-dependent actin filament-severing proteins, and suggested that chromaffin cell stimulation activates scinderin with the consequent disruption of F-actin networks. Scinderin, a protein recently isolated in our laboratory, is restricted to secretory cells and is present mainly in the cortical chromaffin cell cytoplasm. Scinderin, which is structurally different from gelsolin (different pIs, amino acid composition, peptide maps, and so on), decreases the viscosity of actin gels as a result of its F-actin-severing properties, as demonstrated by electron microscopy. Stimulation of chromaffin cells either by nicotine (10 μM) or high K+ (56 mM) produces a redistribution of subplasmalemmal scinderin and actin disassembly, which preceded exocytosis. The redistribution of scinderin and exocytosis is Ca2+-dependent and is not mediated by muscarinic receptors. Furthermore, our cytochemical experiments demonstrate that chromaffin cell stimulation produces a concomitant and similar redistribution of scinderin (fluorescein-labeled antibody) and F-actin (rhodamine phalloidin fluorescence), suggesting a functional interaction between these two proteins. Stimulation-induced redistribution of scinderin and F-actin disassembly would produce subplasmalemmal areas of decreased cytoplasmic viscosity and increased mobility for chromaffin granules. Exocytosis sites, evaluated by antidopamine-β-hydroxylase (anti-DβH) surface staining, are preferentially localized in plasma membrane areas devoid of F-actin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aunis D. and Perrin D. (1984) Chromaffin granule membrane-F-actin interactions and spectrin-like protein of subcellular organelles: a possible relationship.J. Neurochem. 42, 1558–1569.

    Article  PubMed  CAS  Google Scholar 

  • Aunis D., Guerold B., Bader M.-F. and Cieselski-Treska J. (1980) Immunocytochemical and biochemical demonstration of contractile proteins in chromaffin cells in culture.Neuroscience 5, 2261–2277.

    Article  PubMed  CAS  Google Scholar 

  • Bader M. F. and Aunis D. (1983) The 97 kD α-actinin-like protein in chromaffin granule membranes from adrenal medulla, evidence for localization on the cytoplasmic surface and for binding to actin filaments.Neuroscience 8, 165–181.

    Article  PubMed  CAS  Google Scholar 

  • Bader M.-F., Sontag J.-M., Thiersé D., and Aunis D. (1989) A reassessment of guanine nucleotide effects of catecholamine secretion from permeabilized adrenal chromaffin cells.J. Biol. Chem. 264, 16,426–16,434.

    CAS  Google Scholar 

  • Bader M. F., Trifaró J.-M., Langley, O. K., Thiersé D., and Aunis D. (1986) Secretory cell actin-binding proteins, identification of a gelsolin-like protein in chromaffin cells.J. Cell Biol. 102, 636–646.

    Article  PubMed  CAS  Google Scholar 

  • Bendayan M., Marceau N., Beaudoin, A. R., and Trifaró J.-M. (1982) Immunocytochemical localization of actin in the pancreatic exocrine cell.J. Histochem. Cytochem. 30, 1075–1078.

    PubMed  CAS  Google Scholar 

  • Bernstein F. W. and Bamburg J. R. (1985) Reorganization of actin in depolarized synaptosomes.J. Neurosci. 5, 2565–2569.

    PubMed  CAS  Google Scholar 

  • Birchmeier W. (1984) Cytoskeleton structure and function.Trends Biochem. Sci. 9, 192–195.

    Article  Google Scholar 

  • Buckley K. and Kelly R. B. (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells.J. Cell Biol. 100, 1284–1294.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne R. D. and Cheek T. R. (1988) Role of chromaffin cell cytoskeleton in secretion.Progress in Catecholamine Research, Part A: Basic Aspects and Peripheral Mechanisms, Dahlstrom A., Belmaker R. H., and Sandler, M., eds., R. Liss, New York, pp. 253–256.

    Google Scholar 

  • Burgoyne R. D., Cheek T. R., and Norman K. M. (1986) Identification of a secretory granule-binding protein as caldesmon.Nature 319, 68–70.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne R. D., Morgan A., and O'Sullivan A. J. (1989) The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C.Cell. Signal. 1, 323–334.

    Article  PubMed  CAS  Google Scholar 

  • Cheek T. R. and Burgoyne R. D. (1986) Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells.FEBS Lett. 207, 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Cheek T. R. and Burgoyne R. D. (1987) cAMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells.J. Biol. Chem. 262, 11,663–11,666.

    CAS  Google Scholar 

  • Cheek T. R., Jackson F. R., O'Sullivan A. J., Moreto R. B., Berridge M. J., and Burgoyne R. D. (1989) Simultaneous measurements of cytosolic Ca2+ and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of fura-2 in co-cultured cell.J. Cell Biol. 109, 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  • De Robertis E. D. P. and Bennett H. S. (1954) Submicroscopic vesicular component in the synapse.Fed. Proc. 13, 35.

    Google Scholar 

  • De Robertis E. D. P. and Bennett H. S. (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm.J. Bioph. Bioch. Cytol. 1, 47–58.

    Article  Google Scholar 

  • De Robertis E. D. P. and Vaz Ferreira A. (1957) Electron microscopic study of the excretion of catechol containing droplets in the adrenal medulla.Exp. Cell Res. 12, 568–574.

    Article  Google Scholar 

  • Douglas W. W. (1968) Stimulus-secretion coupling: The concept and clues from chromaffin and other cells.Br. J. Pharmacol. 34, 451–474.

    PubMed  CAS  Google Scholar 

  • Douglas W. W. and Rubin R. P. (1961) The role of calcium in the secretory response of the adrenal medulla to acetylcholine.J. Physiol. 159, 40–57.

    PubMed  CAS  Google Scholar 

  • Fisher S. K., Holz R. W., and Agranoff B. W. (1981) Muscarine receptors in chromaffin cell cultures mediate enhanced phospholipid labeling but not catecholamine secretion.J. Neurochem. 37, 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Green R. and Shields D. (1984) Somatostatin discriminates between the intracellular pathways of secretory and membrane proteins.J. Cell Biol. 99, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner B. and Kelly R. B. (1982) Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells.Cell 28, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Harvey D. G. and MacIntoch F. C. (1940) Calcium and synaptic transmission in a sympathetic ganglion.J. Physiol. 97, 408–418.

    PubMed  CAS  Google Scholar 

  • Houssay B. A. and Molinelli, E. A. (1928) Excitabilité des fibres adrénalino-sécrétories du neuf grand splanchnique: fréquences, seuil et optimum des stimulus: rôle de l'ion calcium.C. R. Seances Soc. Biol. Ses Fil. 99, 172–174.

    CAS  Google Scholar 

  • Hughes A. R. and Putney J. W. Jr. (1990) Inositol phosphate formation and its relationship to calcium signals.Environ. Health Persp 84, 141–147.

    Article  CAS  Google Scholar 

  • Joh T. H. and Hwang O. (1987) Dopamine-β-hydroxylase, biochemistry and molecular biology.Ann. N. Y. Acad. Sci. 493, 343–350

    Article  Google Scholar 

  • Kao L.-S. and Schneider A. S. (1985) Muscarine receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium.J. Biol. Chem. 260, 2019–2022.

    PubMed  CAS  Google Scholar 

  • Kelly R. B. (1985) Pathways of protein secretion in eukaryotes.Science 230, 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Kenigsberg R. L. and Trifaró J.-M. (1980) Presence of high affinity uptake, system for catecholamines in cultured bovine adrenal chromaffin cells.Neuroscience 5, 1547–1556.

    Article  PubMed  CAS  Google Scholar 

  • Kenigsberg R. L. and Trifaró J.-M. (1985) Microin-jections of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation.Neuroscience 14, 335–337.

    Article  PubMed  CAS  Google Scholar 

  • Kim K.-T. and Westhead E. W. (1989) Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2 and secretion from bovine chromaffin cells.Proc. Natl. Acad. Sci. USA 86, 9881–9885.

    Article  PubMed  CAS  Google Scholar 

  • Koffer A., Tatham P. E. R., and Gompers B. D. (1990) Changes in the state of actin during the exocytotic reaction in mast cells.J. Cell Biol. 111, 919–927.

    Article  PubMed  CAS  Google Scholar 

  • Kondo T. H., Wolosewick J. J., and Pappas G. D. (1982) The microtrabecular lattice of the adrenal medulla revealed by polyethylene glycol embedding and stereo electron microscopy.J. Neurosci 2, 57–65.

    PubMed  CAS  Google Scholar 

  • Kwiatkowski, D. J., Janmey P. A., Mole J. E., and Yin H. L. (1985) Isolation and properties of two actin-binding domains in gelsolin.J. Biol. Chem. 260, 15,232–15,238.

    CAS  Google Scholar 

  • Lee R. W. H. and Trifaró J.-M. (1981) Characterization of anti-actin antibodies and their use in immunocytochemical studies on the localization of actin in adrenal chromaffin cells in culture.Neuroscience 6, 2087–2108.

    Article  PubMed  CAS  Google Scholar 

  • Lee R. W. H., Mushynski W. E., and Trifaró J.-M. (1979) Two forms of cytoplasmic actin in adrenal chromaffin cells.Neuroscience 4, 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Matter K., Dreyer F., and Aktories K. (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinun C2 toxin on stimulated noradrenaline release.J. Neurochem. 52, 370–376.

    Article  PubMed  CAS  Google Scholar 

  • Perrin D. and Aunis D. (1985) Reorganization of fodrin induced by stimulation in secretory cells.Nature 315, 589–591.

    Article  PubMed  CAS  Google Scholar 

  • Phillips J. M., Burridge K., Wilson S. O., and Kirshner N. (1983) Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells.J. Cell Biol. 97, 1906–1917.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez Del Castillo A., Lemaire S., Tchakarov L., Jeyapragasan M., Doucet J.-P., Vitale M. L., and Trifaró, J.-M. (1990) Chromaffin cell scinderin: a novel calcium-dependent actin-filament severing protein.EMBO J. 9, 43–52.

    PubMed  Google Scholar 

  • Rothman J. H., Lam C., and Stevens T. H. (1985) Protein sorting and organelle assembly in yeast,Protein Transport and Secretion: Current Communications in Molecular Biology, Gething M. J., ed., Cold Spring Harbor Laboratory, New York, pp. 190–195.

    Google Scholar 

  • Smith A. D. (1968) The storage of hormones.Biochem. J. 109, 17–19.

    Google Scholar 

  • Tartakoff A. M., Vassalli, P., and Detraz M. (1978) Comparative studies of intracellular transport of secretory proteins.J. Cell Biol. 79, 694–707.

    Article  PubMed  CAS  Google Scholar 

  • Tchakarov L., Vitale M. L., Jeyapragasan M., Rodríguez Del Castillo A., and Trifaró J.-M. (1990) Expression of scinderin, an actin filament-severing protein, in different tissues.FEBS Lett. 268, 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Trifaró J.-M. (1977) Common mechanisms of hormone secretion.Annu. Rev. Pharmacol. Toxicol. 17, 27–47.

    Article  PubMed  Google Scholar 

  • Trifaró J.-M. (1978) Contractile proteins in tissues originating in the neural crest.Neuroscience 3, 1–24.

    Article  Google Scholar 

  • Trifaró, J.-M. (1982) The cultured chromaffin cell: a model for the study of biology and pharmacology of paraneurons.Trends Pharmacol. Sci. 3, 389–392.

    Article  Google Scholar 

  • Trifaró, J.-M. (1984) The adrenal paraneuron, its biology and pharmacology.Can. J. Physiol. Pharmacol. 62, 465–466.

    Google Scholar 

  • Trifaró, J.-M. (1990) The 1989 Upjohn Award Lecture: cellular and molecular mechanisms in hormone and neurotransmitter secretion.Can. J. Physiol. Pharmacol. 68, 1–16.

    PubMed  Google Scholar 

  • Trifaró J.-M., Bader M.-F., Côté A., Kenigsberg R. L., Hikita T., and Lee R. W. H. (1985a) Cytoskeleton organization and adrenal chromaffin cell function,Contractile Proteins in Muscle and Non Muscle Cell Systems, Alia E. E., Arena N., and Russo, M. A., eds., Praeger, New York, pp. 459–472.

    Google Scholar 

  • Trifaró, J.-M., Bader M.-F., and Doucet J. P. (1985b) Chromaffin cell cytoskeleton: its possible role in secretion.Can. J. Biochem. Cell Biol. 63, 661–679.

    PubMed  Google Scholar 

  • Trifaró, J.-M. and Bourne G. W. (1981) Differential effects of concanavalin A on acetylcholine and potassium-evoked release of catecholamines from cultured chromaffin cells.Neuroscience 6, 1823–1833.

    Article  PubMed  Google Scholar 

  • Trifaró, J.-M. and Fournier S. (1987) Calmodulin and the secretory vesicle.Ann. NY. Acad. Sci. 493, 417–434.

    Article  PubMed  Google Scholar 

  • Trifaró, J.-M., Fournier S., and Doucet J.-P. (1988) Calmodulin and the cytoskeleton in secretion.Proc. Alfred Benzon Symp. 25, 632–654.

    Google Scholar 

  • Trifaró, J.-M. Kenigsberg R. L., Côté A., Lee R. W. H., and Hikita T. (1984) Adrenal paraneuron contractile proteins and stimulus-secretion coupling.Can. J. Physiol. Pharmacol. 62, 493–501.

    PubMed  Google Scholar 

  • Trifaró J.-M. and Lee R. W. H. (1978)Catecholamines: Basic and Clinical Frontiers. Proceedings of the 4th International Catecholamines Symposium. Usdin E., Kopin J. J., and Barchas J., eds., Pergamon, New York, pp. 358–360.

    Google Scholar 

  • Trifaró, J.-M. and Lee R. W. H. (1980) Morphological characteristics and stimulus-secretion coupling in bovine adrenal chromaffin cell cultures.Neuroscience 5, 1533–1546.

    Article  PubMed  Google Scholar 

  • Trifaró, J.-M., Lee R. W. H., Kenigsberg R. L., and Côté A. (1982) Contractile proteins and chromaffin cell function.Adv. Biosci. 36, 151–158.

    Google Scholar 

  • Trifaró, J.-M., Novas M. L., Fournier S., and Rodríguez Del Castillo A. (1989) Cellular and molecular mechanisms in hormone and neurotransmitter secretion,Recent Advances in Pharmacology and Therapeutics, Velasco M., Israel A., Romero E., and Silva H., eds., Elsevier, New York, pp. 15–20.

    Google Scholar 

  • Trifaró J.-M. and Poisner A. M. (1982) Common properties in the mechanisms of synthesis, processing and storage of secretory productsThe Secretory Process, The Secretory Granule, Vol. 2, Poisner A. M. and Trifaró, J.-M., eds., Elsevier, North Holland, pp. 387–407.

    Google Scholar 

  • Trifaró, J.-M. and Ulpian C. (1976) Isolation and characterization, of myosin from the adrenal medulla.Neuroscience 1, 483–488.

    Article  PubMed  Google Scholar 

  • Vitale M. L., Rodríguez Del Castillo A., Tchakarov L., and Trifaró J.-M. (1991) Cortical filamentous actin disassembly and scinderin redistribution during chromaffin stimulation precede exocytosis, a phenomenon not exhibited by gelsolin.J. Cell Biol. 113, 1057–1067.

    Article  PubMed  CAS  Google Scholar 

  • Vitale M. L., Rodríguez Del Castillo A., and Trifaró J.-M. (1991) Protein kinase C modulates scinderin redistribution and F-actin disassembly in chromaffin cells. 6th Int. Symp. on Chromaffin Cell Biology, August 18–23 Marburg, Germany.

  • Wilson S. P. and Kirshner, N. (1977) The acetylcholine receptor of the adrenal medulla.J. Neurochem. 28, 687–695.

    Article  PubMed  CAS  Google Scholar 

  • Yin H. L. and Stossel T. P. (1979) Control of cytoplasmicactin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein.Nature 281, 583–586.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trifaró, J.M., Rodríguez Del Castillo, A. & Vitale, M.L. Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis. Mol Neurobiol 6, 339–358 (1992). https://doi.org/10.1007/BF02757940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757940

Keywords

Navigation