Skip to main content
Log in

Underpotential deposition of metals – Progress and prospects in modelling

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Underpotential deposition (UPD) of metals is analysed from the perspective of phenomeno-logical and statistical thermodynamic considerations; the parameters influencing the UPD shift have been quantitatively indicated using a general formalism. The manner in which the macroscopic properties pertaining to the depositing ions and solvent dipoles and the nature of the metallic substrate influence the UPD process are highlighted; earlier correlations of the UPD shift with the work function differences are rationalised. Anion-induced phase transitions which manifest as sharp peaks in experimental cyclic voltammograms are discussed using statistical thermodynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolb D M, Prazasnyski M and Gerischer H 1974J. Electroanal. Chem. 54 25

    Article  CAS  Google Scholar 

  2. Kolb D M 1978Advances in electrochemistry and electrochemical engineering (eds) H Gerischer and C W Tobias (New York: John Wiley Interscience) vol. 11, p. 125

    Google Scholar 

  3. Aramata A 1997Modern aspects of electrochemistry (eds) J O'M Bockris, R E White and B E Conway (New York: Plenum) vol. 31, p. 181

    Google Scholar 

  4. Herrero E, Buller L J and Abruna H D 2001Chem. Rev. 101 1897

    Article  CAS  Google Scholar 

  5. Toney M and Melroy O R 1991Electrochemical interfaces — Modern techniques for in situ characterization (ed) H D Abruna (Berlin: VCH) p. 57

    Google Scholar 

  6. Gewirth A A and Niece B K 1997Chem. Rev. 97 1129

    Article  CAS  Google Scholar 

  7. Kötz R 1990Advances in electrochemical science and engineering (eds) H Gerischer and C W Tobias (Weinheim: VCH) vol. 1, p. 75

    Google Scholar 

  8. Lehmpfuhl G, Uchida Y, Zei M S and Kolb D M 1999Imaging of surfaces and interfaces (eds) J Lipkowski and P N Ross (New York: Wiley) p. 57

    Google Scholar 

  9. Leiva E 1996Electrochim. Acta 41 2185

    Article  CAS  Google Scholar 

  10. Blum L, Huckaby D A and Legault M D 1996Electrochim. Acta 41 2207

    Article  CAS  Google Scholar 

  11. Rikvold P A, Brown G, Novotny M A and Wieckowski A 1998Coll. Surf. A 134 3

    Article  Google Scholar 

  12. Adzic R R 2002Encyclopedia of electrochemistry (eds) A J Bard and M Stratmann (Weinheim: Wiley-VCH Verlag) vol. 1, p. 561

    Google Scholar 

  13. Jennings G K and Laibinis P E 1997J. Am. Chem. Soc. 119 5208

    Article  CAS  Google Scholar 

  14. Rikvold P A, Zhang J and Sung Y E 1996Electrochim. Acta 41 2175

    Article  CAS  Google Scholar 

  15. Brown G, Rikvold P A, Mitchell S J and Novotny M A 1999Interfacial electrochemistry: Theory, experiment and applications (ed.) A Wieckowski (New York: Marcel Dekker) p. 47

    Google Scholar 

  16. Blum L, Legault M D and Huckaby D A 1999Interfacial electrochemistry: Theory, experiment and applications (ed.) A Wieckowski (New York: Marcel Dekker) p. 19

    Google Scholar 

  17. Sanchez C and Leiva E 1999Electrochim. Acta 45 691

    Article  CAS  Google Scholar 

  18. Schmickler W 1999Annual reports on the progress of chemistry vol. 95 Section C (London: The Royal Society of Chemistry) p. 128

    Google Scholar 

  19. Sudha V and Sangaranarayanan M V 2002J. Phys. Chem. B106 2699

    Google Scholar 

  20. Bockris J O'M and Reddy A K N 2000Modern electrochemistry 2A 2nd edn (New York: Plenum) chapters 6 and 7

    Google Scholar 

  21. Trasatti S 1978Advances in electrochemistry and electrochemical engineering (eds) H Gerischer and C W Tobias (New York: John Wiley Interscience) vol. 10, p. 213

    Google Scholar 

  22. Bewick A and Thomas B 1976J. Electroanal. Chem. 70 239

    Article  CAS  Google Scholar 

  23. Leiva E P M 1993J. Electroanal. Chem. 350 1

    Article  CAS  Google Scholar 

  24. Takayanagi K, Kolb D M, Kambe K and Lehmpfuhl G 1980Surf. Sci. 100 407

    Article  CAS  Google Scholar 

  25. Sudha V and Sangaranarayanan M V 2003J. Phys. Chem. B107 3907

    Google Scholar 

  26. See for example, Conway B E, Gileadi E and Dzieciuch M 1963Electrochim. Acta 8 143

    Article  CAS  Google Scholar 

  27. Angerstein-Kozlowska H, Macdougall B and Conway B E 1972J. Electroanal. Chem. 39 287

    Article  CAS  Google Scholar 

  28. Gu R A, Cao P G, Sun Y H and Tian Z Q 2002J. Electroanal. Chem. 528 121

    Article  CAS  Google Scholar 

  29. Aurbach D and Gottlieb H 1989Electrochim. Acta 34 141

    Article  CAS  Google Scholar 

  30. Goren E, Chusid O and Aurbach D 1991J. Electrochem. Soc. 138 L6

    Article  CAS  Google Scholar 

  31. Badiali J P 1986Electrochim. Acta 31 149

    Article  CAS  Google Scholar 

  32. Schmickler W 1990Chem. Phys. 141 95

    Article  CAS  Google Scholar 

  33. Schmickler W 1996Chem. Rev. 96 3177

    Article  CAS  Google Scholar 

  34. Sanchez C and Leiva E 1998J. Electroanal. Chem. 458 183

    Article  CAS  Google Scholar 

  35. Hohenberg P and Kohn W 1964Phys. Rev. B136 864

    Article  Google Scholar 

  36. Kohn W and Sham L J 1965Phys. Rev. A140 1133

    Article  Google Scholar 

  37. Smith J R 1969Phys. Rev. 181 522

    Article  CAS  Google Scholar 

  38. Leiva E and Schmickler W 1995Electrochim. Acta 40 37

    Article  CAS  Google Scholar 

  39. Saradha R and Sangaranarayanan M V 1998J. Phys. Chem. B102 5468

    Google Scholar 

  40. Ashcroft N W 1966Phys. Lett. 23 48

    Article  CAS  Google Scholar 

  41. Lehnert W and Schmickler W 1991J. Electroanal. Chem. 310 27

    Article  CAS  Google Scholar 

  42. Roudgar A and Gross A 2003J. Electroanal. Chem. 548 121

    Article  CAS  Google Scholar 

  43. Barbec V, Kim M H, Christian S D and Dryhurst G 1979J. Electroanal. Chem. Interfacial Electrochem. 100 111

    Google Scholar 

  44. Elliott C M and Murray R W 1976Anal. Chem. 48 259

    Article  CAS  Google Scholar 

  45. de Levie R 1988Chem. Rev. 88 599

    Article  Google Scholar 

  46. Ising E 1925Z. Phys. 31 253

    Article  CAS  Google Scholar 

  47. Rangarajan S K 1977J. Electroanal. Chem. 82 93

    Article  CAS  Google Scholar 

  48. Sangaranarayanan M V and Rangarajan S K 1984J. Electroanal. Chem. 176 119

    Article  CAS  Google Scholar 

  49. Pushpalatha K and Sangaranarayanan M V 1997J. Electroanal. Chem. 425 39

    Article  CAS  Google Scholar 

  50. Bosco E 1994J. Electroanal. Chem. 379 509

    Article  Google Scholar 

  51. Denny R A and Sangaranarayanan M V 1995Chem. Phys. Lett. 239 131

    Article  Google Scholar 

  52. Glauber R J 1963J. Math. Phys. 4 294

    Article  Google Scholar 

  53. Kawasaki K 1966Phys. Rev. 147 224

    Article  Google Scholar 

  54. Mitchell S J, Brown G and Rikvold P A 2000J. Electroanal. Chem. 493 68

    Article  CAS  Google Scholar 

  55. Zhang J, Sung Y E, Rikvold P A and Wieckowski A 1996J. Chem. Phys. 104 5699

    Article  CAS  Google Scholar 

  56. Brown G, Rikvold P A, Novotny M A and Wieckowski A 1999J. Electrochem. Soc. 146 1035

    Article  CAS  Google Scholar 

  57. Gimenez M C, Del Popolo M G and Leiva E P M 1999Electrochim. Acta 45 699

    Article  CAS  Google Scholar 

  58. Machado E and Buendia G M 2004J. Magn. Magn. Mater. 272-276 249

    Article  CAS  Google Scholar 

  59. Onsager L 1944Phys. Rev. 65 117

    Article  CAS  Google Scholar 

  60. Ma S K 1976Modern theory of critical phenomena (ed.) W A Benjamin (Reading, MA: Addison Wesley)

    Google Scholar 

  61. Ranjbar Sh and Parsafar G A 1999J. Phys. Chem. B103 7514

    Google Scholar 

  62. Baker G A Jr and Graves-Morris P 1981Encyclopedia of mathematics (ed.) G C Rota (Reading, MA: Addison Wesley) vol. 13

    Google Scholar 

  63. Blum L and Huckaby DA 1991J. Chem. Phys. 94 6887

    Article  CAS  Google Scholar 

  64. Blume M, Emery V J and Griffiths R B 1971Phys. Rev. A4 1071

    Google Scholar 

  65. Tarasenko A A and Jastrabik L 1997J. Electroanal. Chem. 440 201

    Article  CAS  Google Scholar 

  66. Sivardiere J and Lajzerowicz J 1975Phys. Rev. A11 2101

    Google Scholar 

  67. Schultze J W and Dickertmann D 1976Surf. Sci. 54 489

    Article  CAS  Google Scholar 

  68. Rajendran L and Sangaranarayanan M V 1997J. Phys. Chem. B101 4583

    Google Scholar 

  69. Arun Prasad M and Sangaranarayanan M V 2004Electrochim. Acta 49 445

    Article  CAS  Google Scholar 

  70. Rama Kant and Rangarajan S K 1990J. Electroanal. Chem. 277 19

    Article  Google Scholar 

  71. Huckaby D A and Blum L 1991J. Electroanal. Chem. 315 255

    Article  CAS  Google Scholar 

  72. Tanaka T 2002Methods of statistical physics (Cambridge: University Press)

    Google Scholar 

  73. Fowler R and Guggenheim E A 1965Statistical thermodynamics (Cambridge: University Press)

    Google Scholar 

  74. Kikuchi R 1951Phys. Rev. 81 988

    Article  Google Scholar 

  75. Saradha R and Sangaranarayanan M V 1997Langmuir 13 5470

    Article  CAS  Google Scholar 

  76. Guidelli R 1981J. Electroanal. Chem. 123 59

    Article  CAS  Google Scholar 

  77. Schmickler W 1983J. Electroanal. Chem. 149 15

    Article  CAS  Google Scholar 

  78. Huckaby D A, Legault M D and Blum L 1998J. Chem. Phys. 109 3600

    Article  CAS  Google Scholar 

  79. Samant M G, Borges G L, Gordon J G, Melroy O R and Blum L 1987J. Am. Chem. Soc. 109 5970

    Article  CAS  Google Scholar 

  80. Tadjeddine A, Guay D, Ladouceur M and Tourillon G 1991Phys. Rev. Lett. 66 2235

    Article  CAS  Google Scholar 

  81. Omar I H, Pauling H J and Juttner K 1993J. Electroanal. Chem. Soc. 140 2187

    Article  CAS  Google Scholar 

  82. Inzelt G and Horanyi G 2000J. Electroanal. Chem. 491 111

    Article  CAS  Google Scholar 

  83. Wandlowski T 2002Encyclopedia of electrochemistry (eds) M Urbakh and E Gileadi (Weinheim: VCH-Wiley) vol. 1, p. 383

    Google Scholar 

  84. Nikitas P 1996Electrochim. Acta 41 2159

    Article  CAS  Google Scholar 

  85. Girija T C and Sangaranarayanan M V 2005J. Solid State Electrochem. (in press)

  86. Pauling L 1960The Nature of Chemical Bond 3rd edn (New York: Cornell Univ. Press) chapter 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sangaranarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudha, V., Sangaranarayanan, M.V. Underpotential deposition of metals – Progress and prospects in modelling. J Chem Sci 117, 207–218 (2005). https://doi.org/10.1007/BF02709289

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709289

Keywords

Navigation