Skip to main content
Log in

Cell volume changes affect gluconeogenesis in the perfused liver of the catfishClarias batrachus

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In addition to lactate and pyruvate, some amino acids were found to serve as potential gluconeogenic substrates in the perfused liver ofClarias batrachus. Glutamate was found to be the most effective substrate, followed by lactate, pyruvate, serine, ornithine, proline, glutamine, glycine, and aspartate. Four gluconeogenic enzymes, namely phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase (PC), fructose 1,6-bisphosphatase (FBPase) and glucose 6-phosphatase (G6Pase) could be detected mainly in liver and kidney, suggesting that the latter are the two major organs responsible for gluconeogenic activity in this fish. Hypo-osmotically induced cell swelling caused a significant decrease of gluconeogenic efflux accompanied with significant decrease of activities of PEPCK, FBPase and G6Pase enzymes in the perfused liver. Opposing effects were seen in response to hyperosmotically induced cell shrinkage. These changes were partly blocked in the presence of cycloheximide, suggesting that the aniso-osmotic regulations of gluconeogenesis possibly occurs through an inverse regulation of enzyme proteins and/or a regulatory protein synthesis in this catfish. In conclusion, gluconeogenesis appears to play a vital role inC. batrachus in maintaining glucose homeostasis, which is influenced by cell volume changes possibly for proper energy supply under osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FBPase:

Fructose 1,6-bisphosphatase

GDH:

glutamate dehydrogenase

GPase:

glycogen phosphorylase

G6Pase:

glucose-6-phosphatase

G6PDH:

glucose-6-phosphate dehydrogenase

GSase:

glycogen synthase

LDH:

lactate dehydrogenase

PC:

pyruvate carboxylase

PEPCK:

phosphoenol-pyruvate carboxykinase

RVD:

regulatory volume decrease

RVI:

regulatory volume increase

References

  • Bergmeyer H U, Brent E, Schmidt E and Stork H 1974 D-glucose. Determination with hexokinase and glucose-6-phosphate dehydrogenase; inMethods of enzymatic analysis (eds) H U Bergmeyer, J Bergmeyer and M GraΒ1 (New York: Academic press) pp 1196–1201

    Google Scholar 

  • Bever K, Chenoweth M and Dunn A 1981 Amino acid gluco-neogenesis and glucose turnover in kelp bass (Paralabrax sp.);Am. J. Physiol. 240 R246-R252

    PubMed  CAS  Google Scholar 

  • Bianchini L, Fossat B, Porthe-Nibelle J, Ellory J C and Lahlou B 1988 Effects of hyposmotic shock on ion fluxes in trout hepatocytes;J. Exp. Biol. 137 303–318

    PubMed  CAS  Google Scholar 

  • Bianchini L, Fossat B, Porthe-Nibelle J and Lahlou B 1991 Activation by N-ethylmaleimide of a Cl--dependent K+ flux in isolated trout hepatocytes;J. Exp. Biol. 157 335–348

    PubMed  CAS  Google Scholar 

  • Buck L T, Brill R W and Hochachka P W 1992 Gluconeogenesis in hepatocytes isolated from the skipjack tuna (Katsuwonus pelamis);Can. J. Zool. 70 1254–1257

    CAS  Google Scholar 

  • Burg M B 2000 Macromolecular crowding as a cell volume regulation: a comparative view;Am. J. Physiol. 257 C159-C173

    Google Scholar 

  • Carneiro N M and Amaral A D 1982 Effects of insulin and glucagon on plasma glucose level and glycogen content in the organs of the freshwater teleost,Pimelodus maculates;Gen. Comp. Endocrinol. 49 115–121

    Article  Google Scholar 

  • Christiansen D C and KlungsØyr 1987 Metabolic utilization of nutrients and the effects of insulin in fish;Comp. Biochem. Physiol. B88 701–711

    Google Scholar 

  • Cowey C B 1979 Protein and amino acid requirement in fin fish; inFish nutrition and fish feed technology (eds) J E Halver and K Tiews (Berlin: Heeneman) vol. 1, pp 3–16

    Google Scholar 

  • Das J R, Saha N and Ratha B K 1991 Tissue distribution and subcellular localization of glutamate dehydrogenase in a fresh-water air-breathing teleost,Heteropneustes fossilis;Biochem. Syst. Ecol. 19 207–212

    Article  CAS  Google Scholar 

  • Dave G, Johansson-Sjobeck M L, Larsson A, Lewander K and Lidman U 1975 Metabolic and hematological effects of starvation in the European eel (Anguilla anguilla L.) 1. Carbohydrate, lipid, protein and inorganic metabolism;Comp. Biochem. Physiol. A52 423–430

    Article  Google Scholar 

  • De la Higuera M and Cardenas P 1986 Hormonal effects on gluconeogenesis from (U-14C) glutamate in rainbow troutSalmo gairdneri;Comp. Biochem. Physiol. B85 517–521

    Google Scholar 

  • Dkhar J, Saha N and Ratha B K 1991 Ureogenesis in a fresh water teleost: An unusual sub-cellular localization of ornithine-urea cycle enzymes in the fresh water air-breathing teleost,Heteropneustes fossilis;Biochem. Int. 25 1061–1069

    PubMed  CAS  Google Scholar 

  • Fiske C H and Subbarow Y 1957 Method for the estimation of phosphate; inMethods in enzymology (eds) S P Colowick and N O Kaplin (New York: Academic Press) vol. 3, pp 843–844

    Google Scholar 

  • Foster G D and Moon T W 1986 Cortisol and liver metabolism of immature American eels,Anguilla rostrata (Le Sueur);Fish Physiol. Biochem. 1 113–124

    Article  CAS  Google Scholar 

  • Goswami C and Saha N 1998 Glucose, pyruvate and lactate efflux by the perfused liver of a teleost,Clarias batrachus during aniso-osmotic exposure;Comp. Biochem. Physiol. A119 999–1007

    Google Scholar 

  • Hallgren N K, Busty E R and Mommsen T P 2003 Cell volume affects glycogen phosphorylase activity in fish hepatocytes;J. Comp. Physiol. 173 591–599

    CAS  Google Scholar 

  • Haynes J K and Goldstein L 1993 Volume-regulatory amino acid transport in erythrocytes of the little skate,Raja erinacea;Am. J. Physiol. 265 R173-R179

    PubMed  CAS  Google Scholar 

  • HÄussinger D 1996 The role of cellular hydration in the regulation of cell function;Biochem. J. 321 697–710

    Google Scholar 

  • Hayashi S and Ooshiro Z 1979 Gluconeogenesis in isolated liver cells of the eel,Anguilla japonica;J. Comp. Physiol. 132 343–350

    CAS  Google Scholar 

  • Jackson P S, Churchwell K, Ballatori N, Boyer J L and Strange K 1996 Swelling activated anion conductance in skate hepato-cytes: regulation by Cl- and ATP;Am. J. Physiol. 270 C57-C66

    Google Scholar 

  • Janssens P A and Waterman J 1988 Hormonal regulation of gluconeogenesis and glycogenolysis in carp (Cyprinus carpio) liver pieces culturedin vitro;Comp. Biochem. Physiol. A91 451–455

    Article  Google Scholar 

  • Knox D, Walton M J and Cowey C B 1980 Distribution of enzymes of glycolysis and gluconeogenesis in fish tissues;Mar. Biol. 56 7–10

    Article  CAS  Google Scholar 

  • Kültz D and Avila K 2001 Mitogen-activated protein kinases arein vivo transducers of osmosensory signals in fish gill cells;Comp. Biochem. Physiol. B129 821–829

    Google Scholar 

  • Lang F, Ritter M, Gamper N, Huber S, Fillon S, Tanneur V, Lepple-Wienhues A, Szabo I and Bulbins E 2000 Cell volume in the regulation of cell proliferation and apoptotic cell death;Cell. Physiol. Biochem. 10 417–428

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Takekawa M and Saito H 1995 Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor;Science 269 554–558

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Fossat B, Porthe-Nibblle J, Lahlou B and Saint-Marc P 1994 Effects of hyposmotic shock on taurine transport in isolated trout hepatocytes;Exp. Physiol. 79 983–995

    PubMed  CAS  Google Scholar 

  • Minton A P 2001 The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media;J. Biol. Chem. 276 10577–10580

    Article  PubMed  CAS  Google Scholar 

  • Mommsen T P 1986 Comparative gluconeogenesis in hepatocytes from salmonid fishes;Can. J. Zool. 64 1110–1115

    CAS  Google Scholar 

  • Mommsen T P and Moon T W 1987 Metabolic potential of hepatocytes and kidney tissue in the little skate,Raja erinacea;J. Exp. Zool. 244 1–8

    Article  CAS  Google Scholar 

  • Mommsen T P, Walsh P J and Moon T W 1985 Gluconeogenesis in hepatocytes and kidney of Atlantic salmon;Mol. Physiol. 8 89–100

    CAS  Google Scholar 

  • Moon T W 1988 Adaptation, constraint and the function of the gluconeogenic pathway;Can. J. Zool. 66 1059–1068

    Article  CAS  Google Scholar 

  • Moon T W and Foster G D 1995 Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences; inMolecular biology and biochemistry of fishes (eds) P W Hochachka and T P Mommsen (Amsterdam: Elsevier) vol.4, pp 65–100

    Google Scholar 

  • Moon T W and Johnston I A 1980 Starvation and the activities of glycolytic and gluconeogenic enzymes in skeletal muscles and liver of the plaice,Pleuronectes platessa;J. Comp. Physiol. 136 31–38

    CAS  Google Scholar 

  • Moon T W, Walsh P J and Mommsen T P 1985 Fish hepatocytes: A model metabolic system;Can. J. Fish. Aquat. Sci. 42 1772–1782

    Article  CAS  Google Scholar 

  • Munshi J S D and Ghosh T K 1994 Metabolic wheel hypothesis as applied to air-breathing fishes of India; inAdvances in fish biology (ed.) H R Singh (Delhi: Hindustan) vol. 1, pp 70–78

    Google Scholar 

  • Nordlie R C and Arion W J 1966 Glucose-6-phosphatase; inMethods of enzymology (ed.) W A Wood (New York: Academic Press) vol. 9, pp 619–624

    Google Scholar 

  • Olson J E and Anfinsen C B 1952 The crystallization and characterization of L-glutamic acid dehydrogenase;J. Biol. Chem. 197 67–79

    PubMed  CAS  Google Scholar 

  • Pandian T J and Vivekanandan E 1985 Energetics of feeding and digestion; inFish energetics, new perspectives (eds) P Tytler, P Calow and M D Baltimore (Baltimore: The Johns Hopkins University Press) pp 99–124

    Google Scholar 

  • Panserat S, Plagnes-Juan E, Brèque J and Kaushik S 2001 Hepatic phosphoenolpyruvate carboxykinase gene expression not repressed by dietary carbohydrates in rainbow trout (Oncorhynchus mykiss);J. Exp. Biol. 204 359–365

    PubMed  CAS  Google Scholar 

  • Perlman D F and Goldstein L 1999 Organic osmolytes channels in cell volume regulation in vertebrates;J. Exp. Biol. 283 725–733

    CAS  Google Scholar 

  • Peterson T D P, Hochachka P W and Saurez R K 1987 Hormonal control of gluconeogenesis in rainbow trout hepatocytes: regulatory role of pyruvate kinase;J. Exp. Zool. 243 173–180

    Article  Google Scholar 

  • Quillard M, Husson A, Chedeville A, Fairand A and Lavoinne A 1998 Protein synthesis is involved in the modulation of the level of the phosphoenolpyruvate carboxykinase mRNA by changes in cell volume in isolated rat hepatocytes;FEBS Lett. 423 125–128

    Article  PubMed  CAS  Google Scholar 

  • Renaud J M and Moon T W 1980a Characterization of gluconeogenesis in hepatocytes isolated from the American eel,Anguilla rostrata LeSueur;J. Comp. Physiol. B135 115–125

    Google Scholar 

  • Renaud J M and Moon T W 1980b Starvation and the metabolism of hepatocytes isolated from the American eel,Anguilla rostrata LeSueur;J. Comp. Physiol. B135 127–137

    Google Scholar 

  • Ross B D, Hens R, Freedland R A and Krebs H A 1967 Carbohydrate metabolism of the perfused rat liver;Biochem. J. 105 864–875

    Google Scholar 

  • Saha N and Goswami C 2004 Effects of anisotonicity on pentose-phosphate pathway, oxidized glutathione release and t-butylhydroperoxide-induced oxidative stress in the perfused liver of air-breathing catfish,Clarias batrachus;J. Biosci. 29 179–187

    PubMed  CAS  Google Scholar 

  • Saha N, Das L and Dutta S 1999 Types of carbamyl phosphate synthetase and subcellular localization of urea cycle and related enzymes in air-breathing walking catfish,Clarias batrachus;J. Exp. Zool. 283 121–130

    Article  CAS  Google Scholar 

  • Saha N, Dkhar J and Ratha B K 1995 Induction of ureogenesis in the perfused liver of a freshwater teleostHeteropneustes fossilis, infused with different concentrations of ammonium chloride;Comp. Biochem. Physiol. B112 733–741

    Google Scholar 

  • Saha N, Dutta S and Bhattacharjee A 2002 Role of amino acid metabolism in an air-breathing catfish,Clarias batrachus in response to exposure to a high concentration of exogenous ammonia;Comp. Biochem. Physiol. B133 235–250

    Google Scholar 

  • Saha N, Stoll B, Lang F and HÄussinger D 1992 Effect of anisotonic cell-volume modulation on glutathione-S-conjugate release, t-butylhydroperoxide metabolism and the pentose-phosphate shunt in the perfused rat liver;Eur. J. Biochem. 209 437–444

    Article  PubMed  CAS  Google Scholar 

  • Saurez R K and Mommsen T P 1987 Gluconeogenesis in teleost fishes;Can. J. Zool. 65 1869–1882

    Article  Google Scholar 

  • Söling H D and Kleineke J 1976 Species dependent regulation of hepatic gluconeogenesis in higher animals; inGluconeogenesis: its regulation in mammalian species (eds) R W Han-son and A Mehlman (New York: Wiley-Liss) pp 369–462

    Google Scholar 

  • Söling H D, Willms B, Kleineke J and Gehloff M 1970 Regulation of gluconeogenesis in the guinea pig liver.Eur. J. Biochem. 16 289–302

    Article  PubMed  Google Scholar 

  • Stoll B, Gerok W, Lang F and HÄussinger D 1992 Liver cell volume and protein synthesis;Biochem. J. 287 217–222

    PubMed  CAS  Google Scholar 

  • Veneziale C M, Walter P, Kneer N M and Lardy HA 1967 Influence of L-tryptophan and its metabolites on gluconeogenesis in isolated perfused liver;Biochemistry 16 2129–2139

    Article  Google Scholar 

  • Vorhaben J E and Campbell J W 1972 Glutamine synthetase: A mitochondrial enzyme in uricotelic species;J. Biol. Chem. 247 2763–2767

    PubMed  CAS  Google Scholar 

  • Walton M J and Cowey C B 1979 Gluconeogenesis by isolated hepatocytes from rainbow troutSalmo gairdneri;Comp. Biochem. Physiol. B62 75–79

    Google Scholar 

  • Weiergr⇃er O H and HÄussinger D 2000 Hepatocellular hydration: signal transduction and functional implications;Cell. Physiol. Biochem. 10 409–416

    Google Scholar 

  • Weldon S L, Rando A, Matathias A S, Hod Y, Kalonick P A, Savon S, Cook J S and Hanson R W 1990 Mitochondrial phosphoenolpyruvate carboxykinase from the chicken: comparison of the cDNA protein sequences with the cytosolic isoenzymes;J. Biol. Chem. 265 7308–7317

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmalendu Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, C., Datta, S., Biswas, K. et al. Cell volume changes affect gluconeogenesis in the perfused liver of the catfishClarias batrachus . J Biosci 29, 337–347 (2004). https://doi.org/10.1007/BF02702616

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702616

Keywords

Navigation