Skip to main content
Log in

Endothelin-induced electrical activity and calcium dynamics in vascular smooth muscle cells: A model study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A model is proposed to describe the electrical activitity and intracellular calcium dynamics of vascular smooth muscle cells (SMC) induced by endothelin (ET1). The conductance of the nonselective channels (NSCs), proportional to the ET1-receptor complex (ET·R), is intracellular calcium dependent. Inositol (1,4,5)-trisphosphate (IP3) produced by ET1 releases Ca2+ from the IP3-sensitive Ca2+ store. The transient increase of intracellular Ca2+ triggers the release of Ca2+ from the Ca2+-sensitive store by a Ca2+-induced Ca2+ (CICR) mechanism and activates the Ca2+-activated K+ current (I K,Ca) The inward current (I in) via the NSC can depolarize the cell to a level at which the L-type Ca2+ current becomes activated (I Ca). The level of depolarization is determined by the relative amplitude of (I in+I Ca+I K.Ca) and the voltage- and time-dependent K+ current. The model simulations show that (a) in cells without a CICR mechanism, short-lasting stimulation by ET1 elicits higher membrane potential and Ca2+ than long-lasting stimulation; (b) in cells with or without a CICR mechanism, a reduction of normal membrane capacitance (1 μf/cm2) results in either significant and sustaining or oscillatory membrane potential and intracellular calcium concentration. The applicability of the model to the study of electrical activity and calcium dynamics associated with hypercholesterolemia is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bean, B. P. Classes of calcium channels in vertebrate cells.Annu. Rev. Physiol. 51:367–384, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Benham, C. D., P. Hess, and R. W. Tsien. Two type of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings.Circ. Res. 61(Suppl. I):I10-I16, 1987.

    PubMed  CAS  Google Scholar 

  3. Benham, C. D. ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery.J. Physiol. (Lond.) 419:689–701, 1989.

    CAS  Google Scholar 

  4. Benham, C. D., T. B. Bolton, R. J. Lang, and T. Takewaki. Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery.J. Physiol. (Lond.) 371:45–67, 1986.

    CAS  Google Scholar 

  5. Blackburn, K., and R. F. Highsmith. Nickel inhibits endothelin-induced contractions of vascular smooth muscle.Am. J. Physiol. 258:C1025-C1030, 1990.

    PubMed  CAS  Google Scholar 

  6. Bolotina, V., V. Omelyarenko, B. Heyes, U. Ryan, and P. Bregestovski. Variation of membrane cholesterol alters the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells.Pflugers Arch. 415:262–268, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Boulanger, C., and T. F. Luscher. Release of endothelin from porcine aorta: Inhibition by endothelium-derived nitric oxide.J. Clin. Invest. 85:587–594, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, C., and P. K. Wagoner. Endothelin induces a non-selective cation current in vascular smooth muscle cells.Circ. Res. 69:447–454, 1991.

    PubMed  CAS  Google Scholar 

  9. Fukuroda, T., M. Kobayashi, S. Ozaki, M. Yano, T. Miyauchi, M. Onizuka, Y. Sugishida, K. Goto, and M. Nishikibe. Endothelin receptor subtypes in human versus rabbit pulmonary arteries.J. Appl. Physiol. 76:1976–1982, 1994.

    PubMed  CAS  Google Scholar 

  10. Godfraind, T., D. Mennig, N. Morel, and M. Wibo. Effect of endothelin-1 on calcium channel gating by agonists in vascular smooth muscle.J. Cardiovasc. Pharmacol. 13(Suppl. 5):S112-S117, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Highsmith, R. F., K. Blackburn, and D. J. Schmidt. Endothelin and calcium dynamics in vascular smooth muscle.Annu. Rev. Physiol. 54:257–277, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Hirata, Y., H. Yoshima, S. Takata, T. X. Watanabe, S. Kumagi, K. Nakajima, and S. Sakakibara. Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells.Biochem. Biophys. Res. Commun. 154:868–875, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Hughes, A. D., G. F. Clunn, and M. Schachter. A comparison of calcium channel currents in vascular smooth muscle cells from Watanabe hereditary hypercholesterolemic and New Zealand white rabbits.Biochem. Soc. Trans. 22: 361s, 1994.

    PubMed  CAS  Google Scholar 

  14. Klockner, U., and G. Isenberg. Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current.Pflugers Arch. 418:168–175, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Kugiyama, K., S. A. Kerus, J. D. Morrisett, R. Robert, and P. D. Henry. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins.Nature. 344:160–164, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Kurihara, H., M. Yoshizumi, T. Sugiyama, K. Yamaoke, R. Nagai, F. Takaku, H. Satoh, J. Inui, M. Yanagisawa, T. Masaki, and Y. Yazaki. The possible role of endothelin-1 in the pathogenesis of coronary vasospasm.J. Cardiovasc. Pharmacol. 13(Suppl. 5):S132-S137, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Le Monnier de Gouville, A. C., H. L. Lippton, I. Cavero, W. K. Summer, and A. C. Hyman. Endothelin—a new family of endothelium-derived peptides with wide spread biological properties.Life Sci. 45:1499–1513, 1989.

    Article  PubMed  Google Scholar 

  18. Masaki, T., S. Kimura, M. Yanagisawa, and K. Goto. Molecular and cellular mechanisms of endothelin regulation. Implication for vascular function.Circulation 84:1457–1468, 1991.

    PubMed  CAS  Google Scholar 

  19. Miyauchi, T., Y. Tomobe, R. Shiba, T. Ishikawa, M. Yanagisawa, S. Kimura, Y. Sugishita, I. Ito, K. Goto, and T. Masak. Involvement of endothelin in regulation of human vascular tones: potent vasoconstrictor effect and existence in endothelial cells.Circulation 81:1874–1880, 1990.

    PubMed  CAS  Google Scholar 

  20. Nakao, K., Y. Inoue, M. Oike, K. Kitamura, and H. Kuriyama. Mechanisms of endothelin-induced augmentation of the electrical and mechanical activity in rat portal vein.Pflugers Arch. 415:526–532, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Pang, D. C., A. Johns, K. Patterson, L. H. P. Botelho, and G. M. Rubanyi. Endothelin-1 stimulates phosphatidylinositol hydrolysis and calcium uptake in isolated canine coronary arteries.J. Cardiovasc. Pharmacol. 13(Suppl. 5):S75-S79, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Sen, L., R. A. Bialecki, E. Smith, T. W. Smith, and W. S. Colucci. Cholesterol increases the L-type voltage calcium channel current in arterial smooth muscle cells.Circ. Res. 71:1008–1014, 1992.

    PubMed  CAS  Google Scholar 

  23. Seo, B., B. S. Oemar, R. Siebenmann, L. Von Segesser, and T. F. Luscher. Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels.Circulation 89:1203–1208, 1994.

    PubMed  CAS  Google Scholar 

  24. Simon, S. A., T. J. McIntosh, and R. Latorre. Influence of cholesterol on water penetration into bilayers.Science 216: 65–67, 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Simpson, A. W. M., and C. C. Ashley. Endothelin evoked Ca2+ transients and oscillation in A10 vascular smooth muscle cells.Biochem. Biophys. Res. Commun. 163:1223–1229, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Simpson, A. W. M., A. Stampfl, and C. C. Ashley. Evidence for receptor-mediated bivalent-cation entry in A10 vascular smooth muscle cells.Biochem. J. 267:277–280, 1990.

    PubMed  CAS  Google Scholar 

  27. Singer, J. J., and J. V. Walsh, Jr. Characterization of calcium-activated potassium channels in single smooth muscle cells using the patch-clamp technique.Pflugers Arch. 408: 98–111, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Sudjarwo, S. A., M. Hori, T. Tanaka, Y. Matsuda, T. Okada, and H. Karaki. Subtypes of endothelin ETA and ETB receptors mediating venous smooth muscle contraction.Biochem. Biophys. Res. Commun. 200:627–633, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Tanner, F. C., G. Noll, C. M. Boulager, and T. F. Luscher. Oxidized native low density lipoproteins inhibits relaxations of porcine coronary arteries: role of scavenger receptors and endothelium-derived nitric oxide.Circulation 83:2012–2019, 1991.

    PubMed  CAS  Google Scholar 

  30. Tippins, J. R., J. W. Antoniw, and A. Maseri. Endothelin-1 is a potent constrictor in conductive and resistive coronary arteries.J. Cardiovasc. Pharmacol. 13(Suppl. 5):S177-S179, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Tulenko, T. N., R. A. Bialecki, M. Gleason, and G. D'Angelo. Ion channels, membrane lipids and cholesterol: A role for membrane lipid domains in arterial function. In: Potassium Channels: Basic Function and Therapeutic, edited by T. J. Cholatsky. New York: Liss Inc., 1990, pp. 187–203.

    Google Scholar 

  32. van Renterghem, C., P. Vigue, J. Barhanin, A. Schmid-Alliana, C. Frelin, and M. Lazdunski. Molecular mechanism of action of the vasoconstrictor peptide endothelin.Biochem. Biophys. Res. Commun. 157:977–985, 1988.

    Article  PubMed  Google Scholar 

  33. van Renterghem, C., P. Vigue, Barhanin, A. Schmid-Alliana, C. Frelin, and M. Lazdunski. Moleclar mechanism of endothelin-1 action on aortic cells.J. Cardiovasc. Pharmacol. 13(Suppl. 5):S186-S187, 1989.

    Article  PubMed  Google Scholar 

  34. van Renterghem, C., and M. Lazdunsk. Endothelin and vasopressin activate low conductance chloride channels in aortic smooth muscle cells.Pflugers Arch. 425:156–183, 1993.

    Article  PubMed  Google Scholar 

  35. Walsh, J. V., Jr., and J. J. Singer. Identification and characterization of major ionic currents in isolated smooth muscle cells using the voltage-clamp technique.Pflugers Arch. 408:83–97, 1987.

    Article  PubMed  CAS  Google Scholar 

  36. Wallnofer, A., S. Weir, U. Ruegg, and C. Cauvin. The mechanism of action of endothelin-1 as compared with other agonists in vascular smooth muscle.J. Cardiovasc. Pharmacol. 13(Suppl. 5):S23-S31, 1989.

    Article  PubMed  Google Scholar 

  37. Wong, A. Y. K., and G. A. Klassen. A model of calcium regulation in smooth muscle cell.Cell Calcium 14:227–243, 1993.

    Article  PubMed  CAS  Google Scholar 

  38. Yanagisawa, M., H. Kurihara, S. Kimura, M. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yasaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells.Nature 332:411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Yatani, A., C. L. Seidel, J. Allen, and A. M. Brown. Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein.Circ. Res. 60: 523–533, 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A.Y.K., Klassen, G.A. Endothelin-induced electrical activity and calcium dynamics in vascular smooth muscle cells: A model study. Ann Biomed Eng 24, 547–560 (1996). https://doi.org/10.1007/BF02684224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684224

Keywords

Navigation