Skip to main content

Advertisement

Log in

Cardiovascular phenotype characterization in mice by high resolution magnetic resonance imaging

  • Published:
Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine Aims and scope Submit manuscript

9. Conclusion

Due to its high temporal and spatial resolution, magnetic resonance imaging meets the requirements for accurate and robust in vivo visualization of the murine cardiovascular system. As an intrinsically three-dimensional imaging technique, it allows for quantification of LV volumes without relying on geometric models. Therefore, MRI is uniquely suited for the investigation of morphologic and functional changes in models of heart failure.

The potential application of MRI in the mouse comprises visualization of cardiovascular anatomy and pathology in newborn and adult mice, detection of LV geometric and functional changes both acutely and chronically, visualization of cardiac microstructures such as cardiac valves and coronary arteries, and characterization and quantification of arteriosclerotic plaques in major murine arteries. Furthermore, MR spectroscopy applied to the mouse heart can give important information on in vivo myocardial metabolism. Thus, we feel confident that high resolution MRI may substantially contribute to the understanding of the basic mechanisms of a variety of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter JJ, Tanaka N, Rockman HA, Ross JJ, Chien KR. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995;270(39):23173–8.

    Article  PubMed  CAS  Google Scholar 

  2. Lorenz JN, Robbins J. Measurement of intraventricular pressure and cardiac performance in the intact closed-chest anesthetized mouse. Am J Physiol 1997;272:H1137–46.

    PubMed  CAS  Google Scholar 

  3. Manning WJ, Wei JY, Katz SE, Litwin SE, Douglas PS. In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound: necropsy validation. Am J Physiol 1994;266:H1672–5.

    PubMed  CAS  Google Scholar 

  4. Gardin JM, Siri FM, Kitsis RN, Edwards JG, Leinwand LA. Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res 1995;76:907–14.

    Article  PubMed  CAS  Google Scholar 

  5. Hoit BD, Khoury SF, Kranias EG, Ball RA, Walsh RA. In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res 1995;77:632–7.

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, Hunter JJ, Chien KR, Ross JJ. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 1996;94:1109–17.

    Article  PubMed  CAS  Google Scholar 

  7. Dulce MC, Mostbeck GH, Friese KK, Capute GR, Higgins CB. Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data. Radiology 1993;188(2):371–376.

    PubMed  CAS  Google Scholar 

  8. Shapiro EP, Rogers WJ, Beyar R, Soulen RL, Zerhouni EA, Lima JA, Weiss JL. Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation (1989);79:706–11.

    Article  PubMed  CAS  Google Scholar 

  9. Ruff J, Wiesmann F, Haase A. High-speed respiratory navigation applied to MR imaginag of the living mouse. Proc Int Soc Magn Reson Med 2000;8:1698.

    Google Scholar 

  10. Ruff J, Wiesmann F, Hiller KH, Neubauer S, Rommel E, Haase A. Influence of isoflurane anesthesia on contractility of mouse heart in vivo. An NMR imaging study. MAGMA 1998;6(Suppl. 1):169.

    Google Scholar 

  11. Ruff J, Wiesmann F, Hiller KH, Voll S, von Kienlin M, Bauer WR, Rommel E, Neubauer S, Haase A. Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson Med 1998;40:43–8.

    Article  PubMed  CAS  Google Scholar 

  12. Siri FM, Jelicks LA, Leinwand LA, Gardin JM. Gated magnetic resonance imaging of normal and hypertrophied murine hearts. Am J Physiol 1997;272:H2394–402.

    PubMed  CAS  Google Scholar 

  13. Slawson SE, Roman BB, Williams DS, Koretsky AP. Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med 1998;39:980–7.

    Article  PubMed  CAS  Google Scholar 

  14. Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S. Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol 2000;278(2):H652–7.

    PubMed  CAS  Google Scholar 

  15. Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 1989;172:349–50.

    PubMed  CAS  Google Scholar 

  16. Henson RE, Song SK, Pastorek JS, Lorenz CH. Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol 2000;278:H1117–23.

    PubMed  CAS  Google Scholar 

  17. Kolandaivelu A, Balaban RS. Quantitative evaluation of regional strain in mice using SPAMM tagging and DENSE. Proc Int Soc Magn Reson Med 2000;8:1610.

    Google Scholar 

  18. Fayad ZA, Fallon JT, Shinnar M, Wehrli S, Dansky HM, Poon M, Badimon JJ, Charlton SA, Fisher EA, Breslow JL, Fuster V. Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 1998;98:1541–7.

    Article  PubMed  CAS  Google Scholar 

  19. Ruff J, Wiesmann F, Hiller KH, Rommel E, Neubauer S, Haase A. Microscopic three-dimensional NMR coronary angiography of the mouse in vivo. MAGMA 1998;6(Suppl. 1):413.

    Google Scholar 

  20. Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A. Assessment of myocardial contractility by magnetic resonance microimaging in the mouse in vivo: analysis of contraction and relaxation at rest and during dobutamine stress. Circulation 1998;98(17):760 Suppl.

    Google Scholar 

  21. Hu TC, Pautler RG, MacGowan GA, Koretsky AP. Manganese MRI enhancement of the mouse heart during dobutamine inotropy. Proc Int Soc Magn Reson Med 2000;8:316.

    Google Scholar 

  22. Wiesmann F, Ruff J, Haase A. High-resolution MR imaging in mice. MAGMA 1998;6(2–3):186–8.

    PubMed  CAS  Google Scholar 

  23. Wiesmann F, Ritter C, Illinger R, Dienesche C, Leupold A, Ruff J, Rommel E, Haase A, Neubauer S. Follow-up of changes of cardiac geometry and function in a mouse model of pressure-induced hypertrophy with magnetic resonance micro-imaging. Proc Int Soc Magn Reson Med 2000;8:1589.

    Google Scholar 

  24. Berr SS, Ross AJ, Gilson WD, Yang Z, French BA, Oshinski JN. MRI as a tool to serially assess the progression of heart failure in a mouse. Proc Int Soc Magn Reson Med 2000;8:660.

    Google Scholar 

  25. Kubota T, McTierman CF, Frye CS, Slawson SE, Lemster HB, Koretsky AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997;81627–35.

    Article  PubMed  CAS  Google Scholar 

  26. Franco F, Dubois SK, Peshock RM, Shoket RV. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am J Physiol Heart Circ Physiol 1998;274:H679–83.

    CAS  Google Scholar 

  27. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in betal-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999;96(12):7059–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wiesmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiesmann, F., Ruff, J., Dienesch, C. et al. Cardiovascular phenotype characterization in mice by high resolution magnetic resonance imaging. MAGMA 11, 10–15 (2000). https://doi.org/10.1007/BF02678482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678482

Keywords

Navigation