Skip to main content
Log in

Processing-microstructure relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1Si

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The detailed relationships between thermal-mechanical processing parameters and resulting microstructures for Ti-6Al-2Sn-4Zr-2Mo-0.1 Si (Ti-6242) have been established through compression testing and heat treatment. Beginning with either an equiaxed alpha or Widmanstätten alpha preform microstructure, isothermal compression tests were run at strain rates typical of isothermal forging (10−3 to 10−1 s−1) and conventional forging (1 to 100 s−1). Metallographic investigation of these test specimens in as-deformed and heat treated conditions was used to characterize deformation-induced microstructures and transformations. For the equiaxed alpha microstructure, it was shown that deformation, as well as post-deformation heat treatment, were more effective in promoting microstructures close to the expected equilibrium ones than heat treatment alone, a finding similar to that for other alloy systems. For the metastable Widmanstätten alpha microstructure, the deformation and heat treatment parameters that promote the development of an equilibrium, equiaxed alpha microstructure have been determined. For this microstructure, two separate temperature-strain rate regimes have been identified, and the resulting microstructures correlated with the measured flow stress behavior. For the low temperature regime, deformation is highly nonuniform, and the microstructural features are shown to be similar to those in pearlitic steels and other lamellar alloys. In the higher temperature regime, on the other hand, deformation is much more uniform. The results presented can be applied to select hot forging parameters for the control of final microstructure and properties in Ti-6242 and similarα/β titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. McGannon:The Making, Shaping and Treating of Steel, ninth edition, United States Steel Corporation, Pittsburgh, PA, 1971.

    Google Scholar 

  2. S. V. Radcliffe and E. B. Kula: inFundamentals of Deformation Processing, W. A. Backofen, J. J. Burke, L. F. Coffin, Jr., N. L. Reed, and V. Weiss, eds., Syracuse University Press, Syracuse, NY, 1964, p. 321.

    Google Scholar 

  3. R. I. Jaffee:Progress in Metal Physics, Pergamon Press, London, 1958, vol. 7, p. 65.

    CAS  Google Scholar 

  4. J. C. Chesnutt, C. G. Rhodes, and J. C. Williams:Fractography-Microscopic Cracking Processes, ASTM STP 600, C. D. Beachem and W. R. Warke, eds., ASTM, Philadelphia, PA, 1976, p. 99.

    Google Scholar 

  5. C. C. Chen: Report RD-77-110, Wyman-Gordon Company, North Grafton, MA, October 1977.

    Google Scholar 

  6. G. D. Lahoti and T. Altan: Report AFML-TR-79-4156, Battelle’s Columbus Laboratories, Columbus, OH, 1979.

    Google Scholar 

  7. G. D. Lahoti, T. Altan, and H. L. Gegel: Report AFWAL-TR-80-4162, Battelle’s Columbus Laboratories, Columbus, OH, 1980.

    Google Scholar 

  8. G. D. Lahoti and T. Altan: Report AFWAL-TR-81-4130, Battelle’s Columbus Laboratories, Columbus, OH, 1981.

    Google Scholar 

  9. S. L. Semiatin, G. D. Lahoti, and T. Altan: inProcess Modeling — Fundamentals and Applications to Metals, T. Altan, H. Burte, H. Gegel, and A. Male, eds., ASM, Metals Park, OH, 1980, p. 387.

    Google Scholar 

  10. P. Dadras and J. F. Thomas, Jr.:Metall. Trans. A, 1981, vol. 12A, p. 1867.

    Google Scholar 

  11. C. Hammond and J. Nutting: inForging and Properties of Aerospace Materials, The Metals Society, London, 1978, p. 5.

    Google Scholar 

  12. G. K. Lewis and J. E. Hockett: unpublished research, Los Alamos Scientific Laboratory, Los Alamos, 1981.

  13. R. A. Wood and R. J. Favor:Titanium Alloys Handbook, Report MCIC-HB-02, Metals and Ceramics Information Center, Battelle’s Columbus Laboratories, Columbus, OH, 1972.

    Google Scholar 

  14. J. J. Jonas: private communication, McGill University, Montreal, Quebec, Canada, 1981.

  15. H. J. McQueen and J. J. Jonas: inTreatise on Materials Science and Technology, Vol. 6: Plastic Deformation of Metals, R. J. Arsenault, ed., Academic Press, New York, NY, 1975, p. 394.

    Google Scholar 

  16. I. Weiss and J. J. Jonas:Metall. Trans. A, 1979, vol. 10A, p. 831.

    CAS  Google Scholar 

  17. D. Eylon: private communication, Metcut Materials Research, Wright-Patterson Air Force Base, OH, 1980.

  18. P. Dadras and J. F. Thomas, Jr.:Res Mechanica Letters, 1981, vol. 1, p. 97.

    CAS  Google Scholar 

  19. L. E. Samuels:Optical Microscopy of Carbon Steels, ASM, Metals Park, OH, 1980, p. 177.

    Google Scholar 

  20. B. J. Shaw:Acta Met., 1967, vol. 15, p. 1169.

    Article  CAS  Google Scholar 

  21. J. L. Robins, O. C. Shepard, and O. D. Sherby:J. Iron Steel Inst., 1964, vol. 202, p. 804.

    Google Scholar 

  22. O. D. Sherby, M. J. Harrigan, L. Chamagne, and C. Sauve:Trans. ASM, 1969, vol. 62, p. 575.

    CAS  Google Scholar 

  23. E. Rauch, G. R. Canova, and J. J. Jonas: private communication, McGill University, Montreal, Quebec, Canada, 1982.

  24. S. L. Semiatin and G. D. Lahoti:Metall. Trans. A, 1981, vol. 12A, p. 1705.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S.L., Thomas, J.F. & Dadras, P. Processing-microstructure relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Metall Trans A 14, 2363–2374 (1983). https://doi.org/10.1007/BF02663312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663312

Keywords

Navigation