Skip to main content
Log in

In vitro characterization of estrogen induced syrian hamster renal tumors: Comparison with an immortalized cell line derived from diethylstilbestrol-treated adult hamster kidney

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Primary diethylstilbestrol-induced kidney tumors from Syrian hamsters were grown in vitro and maintained in culture for 6 mo. Combined immunohistochemical studies using antibodies to intermediate filaments and ultrastructural studies of tumor cells in culture exhibited characteristics similar to tumor cells in vivo. Furthermore, the cells manifested transformed properties in culture; they grew both as multilayered colonies attached to the tissue culture substrate and as floating multicellular colonies (spheroids). When cultured cells were injected into diethylstilbestrol-treated recipient hamsters, tumors developed at the injection sites. In contrast, renal tubules or whole kidney cortex from control hamsters cultured in the same medium underwent only short-term growth, with senescence developing after approximately 1 mo. However, cell cultures of kidney cortex from animals treated in vivo for 5 mo. with diethylstilbestrol formed a cell line. This diethylstilbestrol-induced cell line has been maintained in culture for 1.5 yr and has the following characteristics: a) it is anchorage-dependent, b) it is negative in in vivo tumorigenicity tests, and c) cultured cells are histochemically and ultrastructurally similar to cultured tumor cells. This culture system should prove to be of use in studying hormonal carcinogenesis in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algard, F. T. Hormone-induced tumors. I. Hamster flank organ and kidney tumors in vitro. JNCI 25:557–571; 1960.

    PubMed  CAS  Google Scholar 

  2. Barasch, J.; Koseki, C.; Al-Awquati, Q. Immortalization of renal stem cells. J. Am. Soc. Nephrol. 2:438; 1991.

    Google Scholar 

  3. Forsberg, J. G. Estrogen, vaginal cancer, and vaginal development. Am. J. Obstet. Gynecol. 113:83–87; 1977.

    Google Scholar 

  4. Forsberg, J. G. Neonatal estrogen treatment and epithelial abnormalities in the cervicovaginal epithelium of adult mice. Cancer Res. 41:721–734; 1981.

    PubMed  CAS  Google Scholar 

  5. Freyer, J. P.; Schor, P. L. Regrowth kinetics of cells from different regions of multicellular spheroids of four cell lines. J. Cell Physiol. 138:384–392; 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Gladek, A.; Liehr, J. G. Mechanism of genotoxicity of diethylstilbestrol in vivo. J. Biol. Chem. 264:16847–16852; 1989.

    PubMed  CAS  Google Scholar 

  7. Gonzalez, A.; Oberley, T. D.; Li, J. J. Morphological and immunohistochemical studies of the estrogen-induced Syrian hamster renal tumor: probable cell of origin. Cancer Res. 49:1020–1028; 1989.

    PubMed  CAS  Google Scholar 

  8. Gospodarowicz, D.; Lepine, J.; Massoglia, S., et al. Comparison of the ability of basement membranes produced by corneal endothelial and mouse-derived endodermal PF-HR-9 cells to support the proliferation and differentiation of bovine kidney tubule epithelial cells in vitro. J. Cell Biol. 99:947–961; 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Haaf, H.; Li, J. J.; Li, S. A. Covalent binding of estrogen metabolites to hamster liver microsomal proteins: inhibition by ascorbic acid and catechol-O-methyl transferase. Carcinogenesis 8:209–215; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Haaf, H.; Metzler, M. Covalent binding of diethylstilbestrol to microsomal protein in vitro correlates with the organotropism of its carcinogenicity. Carcinogenesis 6:659–660; 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Hacker, H. J.; Bannasch, P.; Liehr, J. G. Histochemical analysis of the estradiol-induced kidney tumors in male Syrian hamsters. Cancer Res. 48:971–976; 1988.

    PubMed  CAS  Google Scholar 

  12. Herbst, A. L.; Aubhy, M. M.; Anderson, D. Neoplastic changes in the human female genital tract following intrauterine exposure to diethylstilbestrol. Prog. Cancer Res. Ther. 31:389–399; 1984.

    Google Scholar 

  13. Horning, E. S.; Whittick, J. W. The histogenesis of stilboestrol-induced renal tumors in the male golden hamster. Br. J. Cancer 8:451–457; 1954.

    PubMed  CAS  Google Scholar 

  14. Kirkman, H. Autonomous derivatives of estrogen-induced renal carcinomas and spontaneous renal tumors in the Syrian hamster. Cancer Res. 34:2728–2740; 1974.

    PubMed  CAS  Google Scholar 

  15. Kirkman, H.; Robbins, M. Estrogen-induced tumors of the kidney. V. Histology and histogenesis in the Syrian hamster. NCI Monogr. 1:93–139; 1959.

    CAS  Google Scholar 

  16. Koide, N.; Sakaguchi, K.; Koide, Y., et al. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other non-adherent environments. Exp. Cell Res. 186:227–235; 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Kwok, C. S.; Crivici, A.; MacGregor, W. D., et al. Optimization of radioimmunotherapy using human malignant melanoma multicell spheroids as a model. Cancer Res. 49:3276–3281; 1989.

    PubMed  CAS  Google Scholar 

  18. Li, J. J.; Li, S. A. High yield of primary serially transplanted hamster renal carcinoma: steroid receptor and morphologic characteristics. Eur. J. Cancer 16:1119–1125; 1980.

    PubMed  CAS  Google Scholar 

  19. Li, J. J.; Talley, D. J.; Li, S. A., et al. Receptor characteristics of specific estrogen binding in the renal adenocarcinoma of the golden hamster. Cancer Res. 36:1127–1132; 1976.

    PubMed  CAS  Google Scholar 

  20. Li, J. J.; Li, S. A.; Cuthbertson, T. L. Nuclear retention of all steroid hormone receptor classes in the hamster renal carcinoma. Cancer Res. 39:2647–2651; 1979.

    PubMed  CAS  Google Scholar 

  21. Li, S. A.; Klicka, J. K.; Li, J. J. Effect of androgen and estrogen treatment on hamster liver and kidney estrogen 2-/4-hydroxylase activity. Endocrinology 119:1810–1815; 1986.

    PubMed  CAS  Google Scholar 

  22. Lin, Y. C.; Talley, D. J.; Villee, C. A. Dynamics of progesterone binding in nuclei and cytosol of estrogen-induced adenocarcinoma cells in primary culture. J. Steroid Chem. 13:29–37; 1980.

    Article  CAS  Google Scholar 

  23. Llombart-Busch, A.; Peydro, A. Morphological, histochemical, and ultrastructural observations of diethylstilbestrol-induced kidney tumors in the Syrian golden hamster. Eur. J. Cancer 11:403–412; 1975.

    Google Scholar 

  24. Lund-Johansen, M.; Bjerkvig, R.; Anderson, K. J. Multicellular tumor spheroids in serum-free culture. Anticancer Res. 9:413–420; 1989.

    PubMed  CAS  Google Scholar 

  25. Mathews, V. S.; Kirkman, H.; Bacon, R. L. Kidney damage in the golden hamster following chronic administration of diethylstilbestrol and sesame oil. Proc. Soc. Exp. Biol. Med. 66:195–196; 1947.

    Google Scholar 

  26. Oberley, T. D.; Lauchner, L. J.; Pugh, T. D., et al. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media. Proc. Natl. Acad. Sci. USA 86:2107–2111; 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Rosenberg, M. R.; Michalopoulous, G. Kidney proximal tubules isolated by collagenase perfusion grow in defined media in the absence of growth factors. J. Cell Physiol. 131:107–113; 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Schwacofer, J. H.; Crooijmans, R. P.; Broers, J. L., et al. Multicellular aggregates from human tumor cell lines for radiation studies. Anticancer Res. 9:441–448; 1989.

    Google Scholar 

  29. Sirbasku, D. A.; Kirkland, W. L. Control of cell growth. IV. Growth properties of a new cell line established from an estrogen-dependent kidney tumor of the Syrian hamster. Endocrinology 98:1260–1272; 1976.

    Article  PubMed  CAS  Google Scholar 

  30. Talley, D. J.; Roy, W. A.; Li, J. J. Behavior of primary and serially transplanted estrogen-dependent renal carcinoma cells in monolayer and in collagen gel culture. In Vitro Cell. Dev. Biol. 18:149–156; 1982.

    Article  CAS  Google Scholar 

  31. Walenta, S.; Bredel, A.; Karbach, U., et al. Interrelationship among morphology, metabolism, and proliferation of tumor cells in monolayer and spheroid culture. Adv. Exp. Med. Biol. 248:847–853; 1989.

    PubMed  CAS  Google Scholar 

  32. West, C. M. Size-dependent resistance of human tumour spheroids to photodynamic treatment. Br. J. Cancer 59:510–514; 1989.

    PubMed  CAS  Google Scholar 

  33. Westweber, D.; Kemler, R.; Ekblom, P. Cell adhesion molecule uvomorulin during kidney development. Dev. Biol. 112:213–221; 1985.

    Article  Google Scholar 

  34. Yang, A. H.; Gould-Kostka, J.; Oberley, T. D. In vitro growth and differentiation of human kidney tubular cells on a basement membrane substrate. In Vitro Cell. Dev. Biol. 23:34–46; 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by the Medical Research Service, Department of Veterans Affairs, Washington, DC, and by grant CA-22008 from the National Cancer Institute, NIH, DHHS, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, A., Oberley, T.D., Schultz, J.L. et al. In vitro characterization of estrogen induced syrian hamster renal tumors: Comparison with an immortalized cell line derived from diethylstilbestrol-treated adult hamster kidney. In Vitro Cell Dev Biol - Animal 29, 562–573 (1993). https://doi.org/10.1007/BF02634150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634150

Key words

Navigation