Skip to main content
Log in

Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

This study demonstrates that retinoic acid (RA), an active metabolite of vitamin A, can act to enhance regeneration of neurites, at physiologic concentrations, in vitro. Explanted fragments of mouse dorsal root ganglia (DRG) and mouse and human spinal cord (SC) were maintained, in vitro, for periods up to 11 d. Murine DRG neurons were exposed to RA concentrations ranging from 100 µM to 1 nM, whereas neurons within murine and human SC explants were exposed to 10 µM to 10 nM RA. Results show that RA significantly (P<0.001) increases mean neurite length but not neurite number. Specifically, murine DRG neurons showed increases in mean neurite length of 30.7% with individual explants showing increases of up to 133.5%. Murine and human SC showed mean enhancements of 43.4 and 58.1%, respectively, but did so at lower concentrations of RA. The results indicate that RA may play a potentially critical role in neuronal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bionique Laboratories. Bloomingdale Road, Saranac Lake, N.Y.

  • Bonanni, S.; Levinson, S.; Wolf, G., et al. Glycoproteins from the hamster respiratory tract and their response to vitamin A. Biophys. Acta 297:441–451; 1973.

    CAS  Google Scholar 

  • Brand, N.; Petkovich, M.; Krust, A., et al. Identification of a second retinoic acid receptor. Nature 332:850–853; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Chytil, F. Retinoic acid: biochemistry, pharmacology, toxicology and therapeutic use. Pharmacol. Rev. 36:935–942; 1984.

    Google Scholar 

  • De Boni, U.; Crapper McLachlan, D. R. Controlled induction of Alzheimer type paired helical filaments in cultured human neurons, by glutamate and aspartate. J. Neurol. Sci. 68:105–118; 1985.

    Article  PubMed  Google Scholar 

  • De Boni, U.; Anderchek, K. E. Quantitative analysis of filopodial activity of mammalian neuronal growth cones, in exogenous, electrical fields. In: Nucitelli, R., ed. Ionic currents in development. New York: Alan R. Liss, Inc.; 1986:285–293.

    Google Scholar 

  • De Boni, U.; Mintz, A. H. Curvilinear motion of fluorescent chromatin domains and nucleoli in neuronal interphase nuclei. Science 234:863–866; 1986.

    Article  PubMed  Google Scholar 

  • Diem, K.; Lentner, C. Geigy scientific tables. In: Diem, K.; Lentner, C., eds. Units of measurement, body fluids, composition of the body, nutrition, vol. 1, 7th ed. Basel, Switzerland: Ciba Geigy; 1981.

    Google Scholar 

  • Felber, S. M.; Brand, M. D. Concanavalin A causes an increase in sodium permeability and intracellular sodium content of pig lymphocytes. Biochem. J. 210:893–897; 1983.

    PubMed  CAS  Google Scholar 

  • Ferrari, N.; Vidali, G. Effects of retinol on chromatin structure. Eur. J. Biochem. 151:305–310; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Fung, L. C.; De Boni, U. Modulation of nuclear rotation in neuronal interphase nuclei by nerve growth factor, by GABA and by changes in intracellular calcium. J. Cell Mot. Cytoskel. 10:363–373; 1988.

    Article  CAS  Google Scholar 

  • Green, S.; Chambon, P. Carcinogenesis: a superfamily of potentially oncogenic hormone receptors. Nature 324:615–617; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, M. H. The use of retinoids as probes for analyzing morphogenesis of glands from epithelial tissues. In Vitro Cell. Dev. Biol. 25:454–459; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Haskell, B. E.; Stach, R. W.; Werrbach-Perez, K., et al. Effect of retinoic acid on nerve growth factor receptors. Cell Tissue Res. 247:67–73; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Kanje, M.; Lundborg, G.; Edstrom, A. A new method for studies of the effects of locally applied drugs on peripheral nerve regeneration in vivo. Brain Res. 439:116–121; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H. M.; Takagaki, K.; Schmid, K. In vitro nerve-growth-promoting activity of human plasma alphal-acid glycoprotein. J. Neurosci. Res. 20:64–72; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Lotan, R.; Kramer, R. H.; Neumann, O., et al. Retinoic acid-induced modifications in the growth and cell surface components of a human carcinoma (HeLa) cell line. Exp. Cell Res. 130:401–414; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Napoli, J. Quantification of physiological levels of retinoic acid. In: Chytil, F.; McCormick, D., eds. Methods in enzymology (123). Vitamins and coenzymes (H). New York, NY: Academic Press; 1986.

    Google Scholar 

  • Niles, R. M.; Loewy, B. P. Induction of protein kinase C in mouse melanoma cells by retinoic acid. Cancer Res. 49:4483–4487; 1989.

    PubMed  CAS  Google Scholar 

  • Nolen, G. A. The effects of prenatal retinoic acid on the viability and behavior of the offspring. Neurobehav. Toxicol. Teratol. 8:643–654; 1986.

    PubMed  CAS  Google Scholar 

  • Parfianowicz, J.; Hawrylko, S.; Pietrzak, J., et al. Morphology and cytochemistry of the nerve cells of the spinal ganglia. Folia Morph. Warsaw 30:423–431; 1971.

    Google Scholar 

  • Petkovich, M.; Brand, N.; Krust, A., et al. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, T. S.; Tsin, A. T. C.; Reiter, R. J., et al. Retinoids in the bovine pineal gland. Brain Res. Bull. 22:259–261; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Rosoff, P. M.; Cantley, L. C. Increasing the intracellular Na+ concentration induces differentiation in a pre-B lymphocyte cell line. Proc. Natl. Acad. Sci. USA 80:7547–7550; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Shubeita, H. E.; Sambrook, J. F.; McCormick, A. M. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc. Natl. Acad. Sci. USA 84:5645–5649; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sidell, N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. JNCI 68:589–596; 1982.

    PubMed  CAS  Google Scholar 

  • Sidell, N.; Schlichter, L. Retinoic acid blocks potassium channels in human lymphocytes. Biochem Biophys. Res. Commun. 138:560–567; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J. M. W. We have a morphogen. Nature 327:553–554; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. E.; Milch, P. O.; Muto, Y. The plasma transport and metabolism of retinoic acid in the rat. Biochem. J. 132:821–827; 1973.

    PubMed  CAS  Google Scholar 

  • Strickland, S.; Mahdavi, V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15:393–403; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Thaller, C.; Eichele, G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628; 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, S.D.P., De Boni, U. Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro. In Vitro Cell Dev Biol - Animal 27, 55–62 (1991). https://doi.org/10.1007/BF02630895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630895

Key words

Navigation