Skip to main content
Log in

Long ultradian rhythms in red blood cells and ghost suspensions: Possible involvement of cell membrane

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Oscillations in glyceraldehyde-3-phosphate dehydrogenase (GAPD) and glucose-6-phosphate dehydrogenase (G6PD) activities were recorded in suspensions of intact human red blood cells (RBCs) exposed to various light regimens. The periods of these oscillations, defined as “long ultradian,” ranged between 13 and 18 h regardless of light regimen. The patterns of enzymatic activities were the same when assayed at each time point, in full hypotonic hemolysates, and membrane-free hemolysates. However, if hemolysates were prepared by sonication the activity pattern did not exhibit significant oscillations and the activity was higher than that recorded in hypotonic hemolysates. The observed rhythms may reflect a time-dependent attachment and detachment of enzyme molecules from cell membrane, suggesting that at the bound state the enzyme molecules are (temporarily) inactive. Oscillations with similar long ultradian periods were also observed in Ca++ concentration of suspended RBCs and in the binding of Ca++45 to human RBC ghosts. Treatment of the RBCs with A2C or Diamide before the preparation of the ghosts changed or distorted the rhythmic pattern of Ca++45 binding. These results point to the role of the membrane in processing the long ultradian oscillations. The relation between this type of oscillations to circadian rhythm is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashkenazi, I. E.; Hartman, H.; Strulovitz, B., et al. Activity rhythms of enzymes in human red blood cell suspensions. J. Interdiscip. Cycle Res. 6:291–301; 1975.

    CAS  Google Scholar 

  • Block, G. D.; Khalsa, S. B. Cellular basis of circadian rhythmicity in bulla: a model system. In: Hekkens, W. T.; Kerkhof, G. A.; Rietveld, W. J., eds. Advance in the biosciences, vol. 73. New York: Pergamon Press; 1988:55–66.

    Google Scholar 

  • Brok-Simoni, F.; Ashkenazi, I. E.; Ramot, B., et al. The diurnal rhythm of enzymes in human red cells. Br. J. Haematol. 32:601–607; 1976.

    PubMed  CAS  Google Scholar 

  • Cornelissen, G.; Touitou, Y.; Tritsch, A. B., et al. Circadian rhythms of Adenosine Deaminase activity in human erythrocytes: a transverse study on young, elderly and senile demented subjects. Ric. Clin. Lab. 15:365–374; 1985.

    PubMed  CAS  Google Scholar 

  • Cornelius, G.; Rensing, L. Daily rhythm changes in Mg+2 dependent ATPase activity in human red blood cell membranes in vitro. Biochem. Biophys. Res. Commun. 71:1269–1272; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Cugini, P.; Letizia, C.; Murano, G., et al. Internal desynchronization between circadian rhythms of plasma aldosterone and erythrocyte membrane-bound Na/K-ATPase. Adv. Chronobiol. B:219–228; 1987.

    Google Scholar 

  • Driessche, T. V. Research on the molecular basis of circadian rhythmicity. The cellular approach. In: Hekkens, W. T.; Kerkhof, G. A.; Rietveld, W. J., eds. Advance in the biosciences, vol. 73. New York: Pergamon Press; 1988:19–29.

    Google Scholar 

  • Duchon, G.; Collier, H. B. Enzyme activities of human erythrocyte ghosts: effects of various treatments. J. Membr. Biol. 6:138–157; 1971.

    Article  CAS  Google Scholar 

  • Earnest, D. J.; Sladeck, C. D. Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants in vitro. Brain Res. 382:129–133; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Edmunds, L. N. Chronobiology at the cellular and molecular levels: recent developments. In: Hekkens, W. T; Kerkhof, G. A.; Rietveld, W. J., ed. Advance in the biosciences, vol. 73. New York: Pergamon Press; 1988:1–18.

    Google Scholar 

  • Fairbanks, G.; Steck, T. L.; Wallach, D. F. H. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Gaczyska, M.; Bartosz, G. Oscillations in erythrocyte membrane preparations. Cytobios 52:93–98; 1987.

    Google Scholar 

  • Gamalega, R. E.; Shishko, E. D.; Chyorny, A. P. Preservation of circadian rhythms by human lymphocytes in vitro. Biul. Eksp Biol Med Moskva. 106:586–600; 1988.

    Google Scholar 

  • Halberg, F. Chronobiology. Ann. Rev. Physiol. 31:675–725; 1969.

    Article  CAS  Google Scholar 

  • Harrison, D. G.; Long, C. The calcium content of human erythrocytes. J. Physiol. London 199:367–381; 1968.

    PubMed  CAS  Google Scholar 

  • Hartman, H.; Ashkenazi, I. E.; Epel, B. L. Circadian changes in membrane properties of human red blood cells in vitro as measured by membrane probe. FEBS Lett. 67:161–163; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, J. W.; Schwieger, H. G., eds. The molecular basis of circadian rhythms. Dahlem Conference, Berlin. Abakon Verlagsgesellschaft, Germany; 1975.

    Google Scholar 

  • Karakashian, M. W.; Schwieger, H. G. Circadian properties of the rhythmic system in individual nucleated and enucleated cells ofAcetabularia mediterranea. Exp. Cell Res. 97:366–377; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, A.; Horecker, B. L. Glucose-6-phosphate dehydrogenase. In: Colowick, S. P.; Kaplan, N. O., eds. Methods in enzymology, vol. I. New York: Academic Press; 1955:323–334.

    Chapter  Google Scholar 

  • Kosower, E. M.; Kosower, N. S.; Wegman, P. Membrane mobility agents: IV. The mechanism of particle-cell and cell-cell fusion. Biochem. Biophys. Acta 471:311–329; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Kosower, N. S.; Faltin, Z.; Kosower, E. M. Cell-membrane receptor classes delimited through cap formation either with diamide or with membrane mobility agent, A2C. J. Immunol. Methods 41:215–223; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Lotshaw, D. P.; Jacklet, J. W. Serotonin induced protein phosphorylation in the aplysia eye. Comp. Biochem. Physiol. 86C:27–32; 1987.

    CAS  Google Scholar 

  • Mabood, S. F.; Newman, P. F. J.; Nimmo, I. A. Circadian rhythm in the activity of acetylcholinesterase of human erythrocytes incubated in vitro. Biochem. Soc. Trans. 6:305–308; 1978.

    PubMed  CAS  Google Scholar 

  • Marchesi, V. T.; Palade, G. E. The localization of Mg−Na−K-activated adenosine triphosphate on red cell membranes. J. Cell Biol. 359:385–404; 1967.

    Article  Google Scholar 

  • Peleg, L.; Dotan, A.; Ashkenazi, I. E. Biological oscillations in human red blood cells and in blood cell ghosts. J. Supranol. Struct. and Cell. Biochem. Suppl. 5:112; 1981.

    Google Scholar 

  • Queiroz-Claret, C.; Queiroz, O. Spontaneous circadian rhythms of enzyme activity phosphoenolpyruvate carboxylase and malate dehydrogenase fromKalanchoe blossfeldiana in extracts kept under constant conditions. C. R. Seances Acad. Sci. Ser. III 292:1237–1240; 1981.

    CAS  Google Scholar 

  • Radha, E.; Timothy, D. H. Glutathione level in human platelets display a circadian rhythm in vitro. Thromb. Res. 40:823–831; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Ramot, B.; Brok-Simoni, F.; Chweidan, E., et al. Blood leukocyte enzymes: diurnal rhythm of activity in isolated lymphocytes of normal subjects and chronic lymphatic leukemia patients. Br. J. Haematol. 34:79–85; 1976.

    PubMed  CAS  Google Scholar 

  • Reinberg, A.; Smolensky, M. H. Biological rhythms and medicine. New York: Spring-Verlag; 1983.

    Google Scholar 

  • Robertson, L. M.; Takahashi, J. S. Circadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells. J. Neurosci. 8:22–30; 1988.

    PubMed  CAS  Google Scholar 

  • Solti, M.; Friedrich, P. Partial reversible inactivation of enzymes to binding to the human erythrocyte membrane. Mol. Cell. Biochem. 10:145–152; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Tritsch, G. L.; Halberg, F. Individualized circadian rhythmometry of adenosine deaminase activity in red blood cells of healthy woman. Chronobiologia 6:164; 1979.

    Google Scholar 

  • Velick, S. F. Glyceraldehyde-3-phosphate dehydrogenase from muscle. In: Colowick, S. P.; Kaplan, N. O., eds. Methods in enzymology, vol. I. New York: Academic Press; 1955:401–406.

    Chapter  Google Scholar 

  • Voisin, P.; Martin, C.; Collin, J. P. Alpha 2-adrenergic regulation of arylalkylamine-N-acetyltransferase in organ culture chick pineal gland: characterization with agonists and modulation of experimentally stimulated enzyme activity. J. Neurochem. 49:1421–1426; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Vokac, M. A. A comprehensive system of cosinor treatment programs written for the Apple II microcomputer. Chronobiol. Int. 1:87–92; 1984.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peleg, L., Dotan, A., Luzato, P. et al. Long ultradian rhythms in red blood cells and ghost suspensions: Possible involvement of cell membrane. In Vitro Cell Dev Biol 26, 978–982 (1990). https://doi.org/10.1007/BF02624472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624472

Key words

Navigation