Skip to main content
Log in

Concentration-dependent differntial effects of cortisol on synthesis of α-lactalbumin and of casein in cultured mouse mammary gland explants: Importance of prolactin concentration

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Cortisol was previously shown to elicit a concentration-dependent inhibition of α-lactalbumin accumulation in midpregnant mouse mammary gland cultured in medium containing optimal concentrations of 5 μg/ml prolactin and insulin. In contrast, casein accumulation under these conditions was progressively stimulated by addition of increasing amounts of cortisol (Ono, M.; Oka, T. Cell 19: 473–480; 1980). In the present study we found that in the presence of a suboptimal concentration of 0.5 μg/ml prolactin, 2.8×10−9 M to 2.8×10−7 M cortisol stimulated α-lactalbumin accumulation. Furthermore, higher concentrations of cortisol produced a smaller inhibition of α-lactalbumin accumulation as compared to that obtained in cultures containing 5 μg/ml prolactin. The maximal increase in α-lactalbumin accumulation attained in the presence of 1.4×10−8 M cortisol, 0.5 μg/ml prolactin, and insulin was comparable to that observed in culture containing 5 μg/ml prolactin and insulin. Similar results were obtained in a cortisol concentration-response study of α-lactalbumin accumulation in cultures containing a suboptimal concentration of 0.5 μg/ml human placental lactogen. Measurement of the rate of α-lactalbumin synthesis in cultured tissue indicated that the opposing effects of low and high concentrations of cortisol on α-lactalbumin accumulation involved an alteration in the rate of synthesis of the milk protein. In contrast to α-lactalbumin, the synthesis of casein was stimulated in a concentration-dependent manner by addition of cortisol that acted synergistically with either 0.5 μg/ml or 5 μg/ml prolactin. The maximal increases were obtained in the presence of 2.8×10−6 M cortisol. These results indicated that the action of cortisol on α-lactalbumin accumulation can be modulated by the concentration, of prolactin and suggest that the interplay between cortisol and prolactin in regulation of α-lactalbumin synthesis may be different from that involved in casein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nandi, S. Hormonal control of mammogensis and lactogenesis in the C3H/HeCrgl mouse. Univ. Calif. Berkeley Publ. Zool. 65: 1–128; 1959.

    Google Scholar 

  2. Turkington, R. W. Multiple hormonal interactions. The mammary gland. Biochem. Actions Horm. 2: 55–80; 1971.

    Google Scholar 

  3. Topper, Y. J.; Oka, T. Some aspects of mammary gland development in the mature mouse. Lactation 1: 327–348; 1974.

    CAS  Google Scholar 

  4. Banerjee, M. R. Responses of mammary cells to hormones. Int. Rev. Cytol. 47: 1–97; 1976.

    Article  PubMed  CAS  Google Scholar 

  5. Ono, M.; Oka, T. The differential actions of cortisol on the accumulation of α-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell 19: 473–480; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Topper, Y. J.; Oka, T.; Vonderhaar, B. K. Techniques for studying development of normal mammary epithelial cells in organ culture. Methods Enzymol. 39: 443–454; 1975.

    PubMed  CAS  Google Scholar 

  7. Fitzgerald, D. K.; Covin, B.; Mawal, R.; Ebner, K. E. Enzymic assay for galactosyl transferase activity of lactose synthetase and α-latalbumin in purfied and crude systems. Anal. Biochem. 36: 43–61; 1970.

    Article  PubMed  CAS  Google Scholar 

  8. Nagamatsu, Y.; Oka, T. Purification and characterization of mouse α-lactalbumin and its antibody preparation. Biochem. J. 185: 227–237; 1980.

    PubMed  CAS  Google Scholar 

  9. Takemoto, T.; Nagamatsu, Y.; Oka, T. Casein and α-lactalbumin messenger RNAs during the development of mouse mammary gland: isolation, partial purification and translation in a cell-free system. Dev. Biol. 78: 247–257; 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Green, M.; Pastewka, J. V. Characterization of major milk proteins from BALB/c and C3H mice. J. Dairy Sci. 59: 207–215; 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Weber, K.; Osborn, J. The reliability of molecular weight determination by dodecyl sulfatepolyacrylamide gel electrophoresis. J. Biol. Chem. 244: 4406–4412; 1969.

    PubMed  CAS  Google Scholar 

  12. Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265–274; 1951.

    PubMed  CAS  Google Scholar 

  13. Turkington, R. W.; Topper, Y. J. Stimulation of casein synthesis and histological development of mammary gland by human placental lactogen in vitro. Endocrinology 79: 175–181; 1966.

    PubMed  CAS  Google Scholar 

  14. Singh, D. V.; Bern, H. A. Interaction between prolactin and thyroxine in mouse mammary gland lobulo-alveolar development in vitro. Endocrinology 45: 579–583; 1964.

    Google Scholar 

  15. Vonderhaar, B. K. Studies on the mechanism by which thyroid hormones enhance α-lactalbumin activity in explants from mouse mammary glands. Endocrinology 100: 1423–1431; 1977.

    PubMed  CAS  Google Scholar 

  16. Stockdale, F. E.; Juergens, W. G.; Topper, Y. J. A histological and biochemical study of hormone-dependent differnetiation of mammary gland tissue in vitro. Dev. Biol. 13: 266–281; 1966.

    Article  PubMed  CAS  Google Scholar 

  17. Oka, T.; Topper, Y. J. Hormone-dependent accumulation of rough endoplasmic reticulum in mouse mammary cells in vitro. J. Biol. Chem. 246: 7701–7707; 1971.

    PubMed  CAS  Google Scholar 

  18. Sakai, S.; Banerjee, M. R. Glucocorticoid modulation of prolactin receptors on mammary cells of lactating mice. Biochim. Biophys. Acta 582: 79–88; 1979.

    PubMed  CAS  Google Scholar 

  19. Sakai, S.; Bowman, P.; Yang, Y.; McCormick, K.; Nandi, S. Glucocorticoid regulation of prolactin receptors on mammary cells in culture. Endocrinology 104: 1447–1449; 1979.

    PubMed  CAS  Google Scholar 

  20. Oka, T.; Perry, J. W. Studies on the function of glucocorticoid in mouse mammary epithelial cell differentiation in vitro. J. Biol. Chem. 249: 3586–3591; 1974.

    PubMed  CAS  Google Scholar 

  21. Oka, T.; Perry, J. W. Spermidine as a possible mediator of the glucocorticoid effect on milk protein synthesis in mouse mammary epithelium in vitro. J. Biol. Chem. 249: 7647–7652; 1974.

    PubMed  CAS  Google Scholar 

  22. Sapag-Hagar, M.; Greenbaum, A. L. The role of cyclic nucleotides in the development and function of rat mammary tissue. FEBS Lett. 46: 180–183; 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Speake, B. K.; Dils, R.; Mayer, R. L. Regulation of enzyme turnover during tissue differentiation. Interactions of insulin, prolactin, and cortisol in controlling the turnover of fatty acid synthetase in rabbit mammary gland organ culture. Biochem. J. 154: 359–370; 1976.

    PubMed  CAS  Google Scholar 

  24. Loizzi, R. F. Cyclic-AMP inhibition of mammary gland lactose synthesis: specificity and potentiation by 1-methyl-3-isobutylxanthine. Horm. Metab. Res. 10: 415–419; 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Perry, J. W.; Oka, T. Cyclic-AMP as a negative regulator of hormonally-induced lactogenesis in mouse mammary gland organ culture. Proc. Natl. Acad. Sci. USA 77: 2093–2097; 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Rillema, J. A. Effect of prostaglandins on RNA and casein synthesis in mammary gland explants of mice. Endocrinology 99: 490–495; 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Rillema, J. A. Activation of casein synthesis by protaglandins plus spermidine in mammary gland explants of mice. Biochim. Biophys. Res. Commun. 70: 45–49; 1976.

    Article  CAS  Google Scholar 

  28. Terada, N.; Ono, M.; Nagamatsu, Y.; Oka, T. The reversal of cortisol-induced inhibition of α-lactalbumin formation by prostaglandins in cultured mouse mammary gland. Fed. Proc. 39: 1898; 1980.

    Google Scholar 

  29. Falconer, I. R.; Forsyth, I. A.; Wilson, B. M.; Dils, R. Inhibition of low concentrations of oubain of prolactin-induced lactogenesis in rabbit mammary gland explants. Biochem. J. 172: 509–516; 1978.

    PubMed  CAS  Google Scholar 

  30. Hori, C.; Oka, T. Induction by lithium ion of multiplication of mouse mammary epithelium in culture. Proc. Natl. Acad. Sci. USA 76: 2823–2827; 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Turkington, R. W.; Brew, K.; Vanaman, T. C.; Hill, R. L. The hormonal control of lactose synthetase in the developing mouse mammary gland. J. Biol. Chem. 243: 3382–3387; 1968.

    PubMed  CAS  Google Scholar 

  32. Palmiter, R. D. Hormonal induction and regulation of lactose synthetase in the mouse mammary gland. Biochem. J. 113: 409–417; 1969.

    PubMed  CAS  Google Scholar 

  33. Owens, I. S.; Vonderhaar, B. K.; Topper, Y. J. Concerning the necessary coupling of development to proliferation of mouse mammary epithelial cells. J. Biol. Chem. 248: 472–477; 1973.

    PubMed  CAS  Google Scholar 

  34. Vonderhaar, B. K.; Owen, I. S.; Topper, Y. J. An early effect of prolactin on the formation of α-lactalbumin by mouse mammary epithelial cells. J. Biol. Chem. 248: 467–471; 1973.

    PubMed  CAS  Google Scholar 

  35. Keeler, R.; Wilson, N. Vasopressin contamination as a cause of some apparent renal actions of prolactin. Can. J. Physiol. Pharmacol. 54: 887–890; 1976.

    PubMed  CAS  Google Scholar 

  36. Carey, R. M.; Johanson, A. J.; Seid, S. M. The effect of ovine prolactin on water and electrolyte excretion in many are attributable to vasopressin contamination. J. Clin. Endocrinol. Metab. 44: 850–858; 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, M., Perry, J.W. & Oka, T. Concentration-dependent differntial effects of cortisol on synthesis of α-lactalbumin and of casein in cultured mouse mammary gland explants: Importance of prolactin concentration. In Vitro 17, 121–128 (1981). https://doi.org/10.1007/BF02618068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618068

Key words

Navigation