Skip to main content
Log in

1H-spectroscopic imaging with read gradient during acquisition in inhomogeneous fields: analysis, measurement strategy, and data processing

  • Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

The proton magnetic resonance spectroscopic imaging techniques that use read gradient during acquisition produce proton spectra with high spatial and moderately high spectroscopic resolution in a reasonable time forin vivo applications. These techniques suffer mainly from the spatial and pectral distortions caused by the convolution of spectral/spatial information (chemical-shift artifacts) and from the spectral shifts caused by static magnetic field inhomogeneities. The investigators analyze the chemical-shift artifacts in the presence of nonnegligible static magnetic field inhomogeneities and propose a postdetection processing scheme to correct for such effects. Spectral artifacts caused by chemical shifts, spectral line overlapping, streak broadening, and magnetic field inhomogeneities are discussed. The postdetection data processing scheme is demonstrated on measurements of a phantom as well as a human leg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in the three dimensions.Proc Natl Acad Sci USA 79: 3523–3526.

    Article  PubMed  CAS  Google Scholar 

  2. Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four-dimensional” NMRJ Magn Reson 51: 147–152.

    CAS  Google Scholar 

  3. Maudsley AA, Oppelt A, Ganssen A (1979) Rapid measurement of magnetic field distribution using nuclear magnetic resonance.Siemens Forschung Entwicklung,8: 326–329.

    Google Scholar 

  4. Mansfield P (1984) Spatial mapping of the chemical shift in NMR.Magn Reson Med 1: 370–386

    Article  PubMed  CAS  Google Scholar 

  5. Guilfoyle D, Mansfield P (1985) Chemical-shift imaging.Magn Reson Med 2: 479–489.

    Article  PubMed  CAS  Google Scholar 

  6. Sepponen RE, Sipponen JT, Tantu JI (1984) A method for chemical shift imaging: demonstration of bone marrow involvement with proton chemical shift imaging.J Comput Assist Tomogr 8: 585–587.

    Article  PubMed  CAS  Google Scholar 

  7. Matsui S, Sekihara K, Kohno H (1985) High-speed spatially resolved high-resolution NMR spectroscopy.J Am Chem Soc 107: 2817–2818.

    Article  CAS  Google Scholar 

  8. Matsui S, Sekihara K, Kohno H (1986) Spatially resolved NMR spectroscopy using phase modulated spin-echo trains.J Magn Reson 67:476–490.

    CAS  Google Scholar 

  9. Cho ZH, Nalcioglu O, Park HW, Ra JB, Hilal SK (1985) Chemical-shift correction scheme using echo-time encoding technique.Magn Reson Med 2: 253–261.

    Article  PubMed  CAS  Google Scholar 

  10. Twieg DB, McKinnon GC (1986) Multiple-output chemical shift imaging (MOCSI)—a rapid method for chemical-shift imaging and localized moderate resolution NMR spectroscopy.Magn Reson Imaging 4: 118–119.

    Article  Google Scholar 

  11. Guilfoyle DN, Blamire A, Chapman B, Ordige RJ, Mansfield P (1989) PEEP-a rapid chemical shift imaging method.Magn Reson Med 10: 282–287.

    Article  PubMed  CAS  Google Scholar 

  12. Twieg DB (1989) Multiple-output chemical shift imaging (MOCSI): a practical technique for rapid spectroscopic imaging.Magn Reson Med 12: 64–73.

    Article  PubMed  CAS  Google Scholar 

  13. Webb P, Spielman D, Macovski A (1989) A fast spectroscopic imaging method using a blipped phase encode gradient.Magn Reson Med 12: 306–315.

    Article  PubMed  CAS  Google Scholar 

  14. Haase A, Matthei D (1987) Spectroscopic FLASH imaging (SPLASH imaging).J Magn Reson 71: 550–553.

    CAS  Google Scholar 

  15. Weis J, Frolo I, Budinsky L (1989) Magnetic field distribution measurement by the modified FLASH method.Z Naturforsch 44a: 1151–1154.

    Google Scholar 

  16. Haase A (1990) Snapshot FLASH MRI: applications to T1, T2, and chemical-shift imaging.Magn Reson Med 13: 77–89.

    Article  PubMed  CAS  Google Scholar 

  17. Posse S, Tedeshi G, Risinger R, Ogg R, Le Bihan D (1995) High speed1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding.Magn Reson Med 33: 34–40.

    Article  PubMed  CAS  Google Scholar 

  18. Bito Y, Hirata S, Nabeshima T, Yamamoto E (1995) Echoplanar diffusion spectroscopic imaging.Magn Reson Med 33: 69–73.

    Article  PubMed  CAS  Google Scholar 

  19. Adalsteinsson E, Irarrazobal R, Spielman DH, Macovski A (1995) Three-dimensional spectroscopic imaging with time-varying gradients.Magn Reson Med 33: 461–466.

    Article  PubMed  CAS  Google Scholar 

  20. Maudsley AA, Hilal SK (1985) Field inhomogeneity correction and data processing for spectroscopic imaging.Magn Reson Med 2: 218–233.

    Article  PubMed  CAS  Google Scholar 

  21. Manassen Y, Navon G (1985) A constant gradient experiment for chemical-shift imaging.J Magn Reson 61: 363–370.

    CAS  Google Scholar 

  22. Park HW, Cho ZH (1986) High-resolution humanin vivo spectroscopic imaging using echo-time encoding technique.Magn Reson Med 3: 448–453.

    Article  PubMed  CAS  Google Scholar 

  23. Spielman S, Webb P, Macovski D (1989) Water referencing for spectroscopic imaging.Magn Reson Med 12: 38–49.

    Article  PubMed  CAS  Google Scholar 

  24. Webb P, Spielman D, Macovski A (1992) Inhomogeneity correction forin vivo spectroscopy by high-resolution water referencing.Magn Reson Med 23: 1–11.

    Article  PubMed  CAS  Google Scholar 

  25. Ordige RJ, Cresshull ID (1986) The correction of transient B0 field shifts following the application of pulsed gradients by phase correction in the time domain.J Magn Reson 69: 151–155.

    Google Scholar 

  26. Maudsley AA, Wu Z, Meyerhoff DJ, Weiner MW (1994) Automated processing for proton spectroscopic imaging using water reference deconvolution.Magn Reson Med 31: 589–595.

    Article  PubMed  CAS  Google Scholar 

  27. Ericsson A, Weis J, Hemmingsson A, Wikström W, Sperber GO (1995) Measurement of magnetic field variations in the human brain using a 3D-FT multiple gradient echo technique.Magn Reson Med 33: 171–177.

    Article  PubMed  CAS  Google Scholar 

  28. Christoffersson JO, Olsson LE, Sjöberg S (1991) Nickel-dopped agarose gel phantoms in MR imaging.Acta Radiol 32: 426–431.

    Article  PubMed  CAS  Google Scholar 

  29. Weis J, Nilsson S, Ericsson A, Wikström M, Sperber GO, Hemmingsson A (1994) Measurement of magnetic susceptibility and MR contrast agent concentration.Magn Reson Imaging 12: 859–864.

    Article  PubMed  CAS  Google Scholar 

  30. Weis J, Budinsky L (1990) Simulation of the influence of magnetic field inhomogeneity and distortion correction in MR imaging.Magn Reson Imaging 8: 483–489.

    Article  PubMed  CAS  Google Scholar 

  31. Sekihara K, Matsui S, Kohno H (1985) NMR imaging for magnets with large nonuniformities.IEEE Trans Med Imaging MI-4(4): 193–199.

    Article  PubMed  CAS  Google Scholar 

  32. Thomsen C, Becker U, Winkler K, Christoffersen P, Jensen M, Henriksen O (1994) Quantification of liver fat using magnetic resonance spectroscopy.Magn Reson Imaging 12: 487–495.

    Article  PubMed  CAS  Google Scholar 

  33. Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O (1993) Comparison of localized proton NMR signals of skeletal muscle and fat tissuein vivo: two lipid compartments in muscle.Magn Reson Med 29: 158–167.

    Article  PubMed  CAS  Google Scholar 

  34. Weis J, Görke U, Kimmich R (1996) Susceptibility, field inhomogeneity and chemical-shift corrected NMR microscopy: application to the human fingerin vivo.Magn Reson Imaging 14: 1165–1175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Swedish Medical Research Council, project B-96-17x-006676-14A, and by Uppsala University are gratefully acknowledged. One of us (J.W.) is indebted to the Institute of Measurement Science, Slovak Academy of Sciences, for continuous support, VEGA Grant No. 95/5305/585,468 & 2/1207/96

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weis, J., Ericsson, A. & Hemmingsson, A. 1H-spectroscopic imaging with read gradient during acquisition in inhomogeneous fields: analysis, measurement strategy, and data processing. MAGMA 5, 201–212 (1997). https://doi.org/10.1007/BF02594583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02594583

Keywords

Navigation