Skip to main content
Log in

A model of electrical activity and cytosolic calcium dynamics in vascular endothelial cells in response to fluid shear stress

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model is proposed to describe the intracellularCa 2+ (Ca i) transient and electrical activity of vascular endothelial cells (VEC) elicited by fluid shear stress (τ). The intracellularCa 2+ store of the model VEC is comprised of aCa i-sensitive (sc) and an inositol (1,4,5)-trisphosphate (IP 3)-sensitive compartment (dc). The dc [Ca 2+] is refilled by the sc whose [Ca 2+] is the same as extracellular [Ca 2+].IP 3 produced by the τ-deformed mechanoreceptors discharges the dcCa 2+ into the cytosol. The increase of cytosolic[Ca 2+] inducesCa 2+ release (CICR) from the sc. The raisedCa i activates aCa i-activatedK + current (I K, Ca) and inhibitsIP 3 production. The cell membrane potential is determined byI K, Ca, voltage-dependentNa + andK + currents. Steady τ>0.1 dyne/cm2 elicits aCa i varies sigmoidally withLog 10(τ) with a maximal peakCa i of 150 nM at τ=4 dynes/cm2. Step increases of τ fail to elicit aCa 2+ response in cells previously stimulated by a lower shear. TheCa 2+ response gradually decreases with repetitive τ stimuli. Pulsatile shear elicits two to three times higherCa i and hyperpolarizes the cell more than steady shear of the same magnitude. The simulatedCa 2+ responses to τ are quantitatively and qualitatively similar to those observed in cultured VEC. The model provides a possible explanation of why the vasodilating stimulus is greater for pulsatile flow than for nonpulsatile flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, J., T. Komatsuda, and A. Kamiya. Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cell.In Vitro Cell Dev. Biol. 24:871–877, 1988.

    PubMed  CAS  Google Scholar 

  2. Ando, J., A. Ohtsuka, T. Kawamura, and A. Kimiya. Wall shear stress rather than shear rate regulates cytoplasmicCa ++ responses to flow in vascular endothelial cells.Biochem. Biophys. Res. Commun. 190:716–723, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Barbee, K. E., P. F. Davies, and R. Lal. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy.Circ. Res. 74:163–171, 1994.

    PubMed  CAS  Google Scholar 

  4. Batty, I. R., S. R. Nahorsko, and R. F. Irvine. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices.Biochem. J. 232:211–215, 1985.

    PubMed  CAS  Google Scholar 

  5. Cooke, J. P., J. Stamler, N. N. Andon, R. F. Davies, G. McKinle, and J. Loscalzo. Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol.Am. J. Physiol. 259:H804-H812, 1990.

    PubMed  CAS  Google Scholar 

  6. Davies, R. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Grimbrone. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro.Proc. Natl. Acad. Sci. U.S.A. 83:2114–2117, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Davies, P. F., and S. C. Tripathi. Mechanical stress mechanisms and the cell. An endothelial paradigm.Circ. Res. 72:239–245, 1993.

    PubMed  CAS  Google Scholar 

  8. Davies, P. F., and K. A. Barbee. Endothelial cell surface imaging: insight into hemodynamic force transduction.News Physiol. Sci. 9:153–157, 1994.

    Google Scholar 

  9. De Paola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients.Arteriosclerosis Thromb. 12:1254–1257, 1992.

    Google Scholar 

  10. Dull, R. O., and R. F. Davies. Flow modulation of agonist (ATP)-response (Ca 2+) coupling in vascular endothelial cells.Am. J. Physiol. 261:H149-H154, 1991.

    PubMed  CAS  Google Scholar 

  11. Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. L. Ives. Flow effect on prostacyclin production by cultured human endothelial cells.Science Wash. D.C. 227:1477–1479 1985.

    Article  CAS  Google Scholar 

  12. Giffith, T. M., and D. H. Edwards. Myogenic autoregulation of flow may be inversely related to endothelium-derived relaxing factor activity.Am. J. Physiol. 258:H1171-H1180, 1990.

    Google Scholar 

  13. Goldschmodt-Clermont, P. J., L. M. Mackesky, J. J. Baldassare, and T. D. Pollard. The actin-binding protein profilin binds toPIP 2 and inhibits its hydrolysis by phospholipase C.Science 247:1575–1578, 1990.

    Article  Google Scholar 

  14. Gould, L. K.Coronary Artery Stenosis. New York Elservier Science, 1991. pp. 41–52.

    Google Scholar 

  15. Gould, L. K. Reversal of coronary atherosclerosis.Circulation 90:1558–1571, 1994.

    PubMed  CAS  Google Scholar 

  16. Hensen, C. A., S. Mah, and J. R. William. Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver.J. Biol. Chem. 261:8100–8103, 1986.

    Google Scholar 

  17. Holtz J., U. Forstermann, M. Pohl, M. Giesler, and E. Bassenge. Flow-dependent endothelium-mediated dilation of epicardial coronary arteries in conscious dog: effect of cyclooxygenase inhibition.J. Cardiovasc. Pharmacol. 6: 1161–1169, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Hutchesson, I. R., and T. M. Griffith. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow.Am. J. Physiol. 261:H257–262, 1991.

    Google Scholar 

  19. Irvine, R. F. How do inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate regulate intracellularCa 2+?Biochem. Soc. Trans. 17:6–8, 1989.

    PubMed  CAS  Google Scholar 

  20. Kuo, L., M. J. Davies, and W. M. Chilian: Endothelium-dependent, flow-induced dilation of isolated coronary arteries.Am. J. Physiol. 259:H1063-H1070, 1990.

    PubMed  CAS  Google Scholar 

  21. Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers.Nature 325:811–813, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Melkumyants, A. M., S. A. Belashov, E. S. Veselova, and V. Khayutin. Continuous control of the lumen of feline conduit arteries by blood flow rate.Cardiovasc. Res. 21: 863–870, 1987.

    PubMed  CAS  Google Scholar 

  23. Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes inCa 2+ signalling of vascular endothelial cells: effect of shear stress and ATP.Am. J. Physiol. 260:H1698-H1707, 1991.

    PubMed  CAS  Google Scholar 

  24. Nollert, M. V., S. G. Eskin, and L. V. McIntire. Shear stress increases inositol trisphosphate levels in human endothelial cells.Biochim. Biophys. Res. Commun. 170:281–287, 1990.

    Article  CAS  Google Scholar 

  25. Oike, M., Droogmans, G., and Nilius B. MechanosensitiveCa 2+ transients in endothelial cells from human umbilical vein.Proc. Natl. Acad. Sci. U.S.A. 91:2940–2944, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Olesen, S. P., D. E. Clapham, and P. F. Davies. Heemodynamic shear stress activates aK + current in vascular endothelial cells.Nature 311:168–170, 1988.

    Article  Google Scholar 

  27. Pohl, U., R. Busse, E. Kuo, and E. Bassenge. Pulsatile perfusion stimulates the release of endothelial autacoids.J. Appl. Cardiol. 1:215–235, 1986.

    CAS  Google Scholar 

  28. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor.Am. J. Physiol. 250:H1145-H1149, 1986.

    PubMed  CAS  Google Scholar 

  29. Sage, S. O., D. J. Adams, and C. van Breemen. Synchronized oscillations in cytoplasmic free calcium concentration in confluent bradykinin-stimulated bovine pulmonary artery endothelial cell monolayers.J. Biol. Chem. 264:6–9, 1989.

    PubMed  CAS  Google Scholar 

  30. Sanchez-Bueno, A., C. J. Dixon, N. W. Woods, K. S. R. Cuthbertson, and P. H. Cobbold. Inhibitors of protein kinase C prolong the falling phase of each free-Ca transient in a hormone-stimulated hepatocyte.Biochem. J. 268:627–632, 1990.

    PubMed  CAS  Google Scholar 

  31. Satcher, R. L. J., S. R. Bussolari, M. A. J. Gimbrone, and C. F. J. Dewey. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics.J. Biomech. Eng. 114:309–316, 1992.

    PubMed  Google Scholar 

  32. Smiesko, V. M., J. Kozik, and S. Dolezel. Role of endothelium in the control of arterial diameter by blood flow.Blood Vessels 22:247–251, 1985.

    PubMed  CAS  Google Scholar 

  33. Treasure, C. B., J. A. Vita, D. A. Cox, R. D. Fish, J. B. Gordon, G. H. Mudge, W. S. Colucci, M. G. St John-Sutton, A. P. Selwyn, R. W. Alexander, and P. Ganz. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy.Circulation 81: 772–779, 1990.

    PubMed  CAS  Google Scholar 

  34. Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, Jr., and M. A. Gimbrone. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells.Am. J. Physiol. 262:C384-C390, 1992.

    PubMed  CAS  Google Scholar 

  35. Shen, J., F. W. Luscinskas, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. Fluid flow modulates vascular endothelial cytosolic calcium responses to adenine nucleotides.Microcirculation 1:67–78, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Starmer, C. F. Characterizing activity-dependent processes with a piecewise exponential model.Biometrics 44:549–559, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Watson, P. A. Function follows form: generation of intracellular signal by cell deformation.FASEB J. 5:2013–2019, 1991.

    PubMed  CAS  Google Scholar 

  38. Wong, A. Y. K., and G. A. Klassen. A model of cytosolic calcium regulation and autacoids production in vascular endothelial cell.Basic Res. Cardiol. 87:317–332, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Zeiher, A. M., H. Drexler, H. Wollschlager, and H. Just. Modulation of coronary vasomotor tone. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis.Circulation 83:391–401, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A.Y.K., Klassen, G.A. A model of electrical activity and cytosolic calcium dynamics in vascular endothelial cells in response to fluid shear stress. Ann Biomed Eng 23, 822–832 (1995). https://doi.org/10.1007/BF02584481

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584481

Keywords

Navigation