Skip to main content
Log in

Videomicroscopic method for direct determination of blood flow to the papilla of the kidney

  • Quantitation of Renal Blood Flow and Its Distribution
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We adapted the technique of videomicroscopy for direct determination of blood flow in individual capillaries of the papilla of the kidney, the ascending vasa recta (AVR) and descending vasa recta (DVR). The papilla was exposed in anesthetized rats and positioned under a video-camera-microscope and viewed under epi-illumination. The intravenous infusion of fluorescein-isothiocyanate (FITC)-labeled gamma globulin was combined with fluorescence microscopy to enhance the contrast among plasma, red blood cells and capillary walls. On the television monitor, the walls were clearly outlined, enabling the measurement of capillary diameter. The velocity of red cells (V rbc ) in individual vasa recta was measured using the dual slit technique. From the videotape recorded microscopic image of a vas rectum, two photometric signals were obtained by integrating the light intensity from two electronic “windows” positioned closely together over the same capillary. Red cell velocity was calculated by dividing the distance between the two windows by the time delay between signals. The delay was determined using analog correlation tracking or digital cross correlation techniques. Single vasa recta blood flow was calculated from capillary diameter, V rbc , and F (Fahraeus factor), which converts V rbc to average whole blood velocity, V blood . In quartz capillaries the same size as vasa recta, the ratio F=V rbc /V blood =1.42±0.06. Total papillary blood inflow and outflow was calculated by multiplying the total number of DVR or AVR times the mean single capillary blood flow for DVR or AVR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AVR:

ascending vasa recta

DVR:

descending vas recta

VR:

vas recta

V rbc :

velocity of red blood cells

V blood :

mean blood velocity

F :

Fahraeus factor:V rbc/V blood

Q vr :

mean blood flow in vasa recta

D :

diameter

FITC:

fluorescein-isothiocyanate

SIT:

silicon-intensified target camera

References

  1. Aukland, K. Methods for measuring renal blood flow: Total flow and regional distribution.Ann. Rev. Physiol. 42:543–555, 1980.

    Article  CAS  Google Scholar 

  2. Böttcher, W. and M. Steinhausen. Microcirculation of the renal papilla under control conditions and after temporary ischemia.Kidney Int. 10:576–580, 1976.

    Google Scholar 

  3. Chuang, E.L., H.J. Reineck, R.W. Osgood, R.T. Kunau, Jr., and J.H. Stein. Studies on the mechanism of reduced urinary osmolality after exposure of the renal papilla.J. Clin. Invest. 61:633–639, 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Cohen, H.J. and D.J. Marsh.In vitro calibration of a video-based method for measuring blood velocity in kidney medulla and other tissues subject to respiratory motion.Microvasc. Res. 19:27–287, 1980.

    Article  Google Scholar 

  5. Cohen, H.J., D.J. Marsh, and B. Kayser. Autoregulation in vasa recta of the rat kidney.Am. J. Physiol. 245:F32-F40, 1983.

    PubMed  CAS  Google Scholar 

  6. Cokelet, G.R. Blood rheology interpreted through the flow properties of the red cell. InMicrocirculation, Vol. 1. New York: Plenum Publ. Co., 1976, pp. 1–30.

    Google Scholar 

  7. Fahraeus, R. Die stromungsverhaltnisse und die verteilung der blutzellen im Gefassystem.Klin. Wochenschr. 7:100–106, 1928.

    Article  Google Scholar 

  8. Gussis, G.L., R.L. Jamison, and C.R. Robertson. Determination of erythrocyte velocities in the mammalian inner renal medulla by a video velocity-tracking system.Microvasc. Res. 18:370–383, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Holliger, C., M. Anliker, D. Klingler, and A. Bollinger. Evaluation of an on-line videodensitometric measurement of the red blood cell velocity in the capillaries of the human nailfold.Biomediz. Tech. 20:187–192, 1975.

    Article  CAS  Google Scholar 

  10. Holliger, C., K.V. Lemley, S.L. Schmitt, F.C. Thomas, C.R. Robertson, and R.L. Jamison. Direct determination of vasa recta blood flow in the rat renal papilla.Circ. Res. 53:401–413, 1983.

    PubMed  CAS  Google Scholar 

  11. Intaglietta, M., N.R. Silverman, and W.R. Tompkins. Capillary flow velocity measurements in vivo and in situ by television methods.Microvasc. Res. 10:165–179, 1975.

    Article  PubMed  CAS  Google Scholar 

  12. Jamison, R.L. Micropuncture study of superficial and juxtamedullary nephrons in the rat.Am. J. Physiol. 218:46–55, 1970.

    PubMed  CAS  Google Scholar 

  13. Jamison, R.L., G. Gussis, K. Lemley, and C. Robertson. Studies of the effects of antidiuretic hormone and prostaglandin inhibition on RBC velocity in vasa recta of the inner renal medulla.Proc. 8th Int. Congr. Nephrol., Athens, 1981, pp. 170–175.

  14. Jamison, R.L. and W. Kriz.Urinary Concentrating Mechanism: Structure and Function. New York, Oxford University Press, 1982.

    Google Scholar 

  15. Karlberg, L., Ö. Källskog, G. Öjteg, and M. Wolgast. Renal medullary blood flow studied with the 86-Rb extraction method. Methodological considerations.Acta. Physiol. Scand. 115:11–18, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Lilienfield, L.S., H.C. Maganzini, and M.H. Bauer. Blood flow in the renal medulla.Circ. Res. 9:614–617, 1961.

    PubMed  CAS  Google Scholar 

  17. Marsh, D.J. and L.A. Segel. Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla.Am. J. Physiol. 221:817–828, 1971.

    PubMed  CAS  Google Scholar 

  18. Schwartz, M.M., M.A. Karnovsky, and M.A. Venkatachalam. Ultrastructural differences between rat inner medullary descending and ascending vasa recta.Lab. Invest. 35:161–170, 1976.

    PubMed  CAS  Google Scholar 

  19. Tinsman, J.E. On-line digital correlator M.S. thesis. University of California, Santa Barbara, 1983.

    Google Scholar 

  20. Tompkins, W.R., R. Monti, and M. Intaglietta. Velocity measurements by selftracking correlator.Rev. Sci. Instrum. 45:647–649, 1974.

    Article  Google Scholar 

  21. Wayland, H. A physicist looks at the microcirculation. The Microcirculatory Society Eugene M. Landis Award Lecture.Microvasc. Res. 23:139–170, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Wayland, H. and P.C. Johnson. Erythrocyte velocity measurements in microvessels by a two-slit photometric method.J. Appl. Physiol. 22:333–337, 1967.

    PubMed  CAS  Google Scholar 

  23. Yarger, W.E., M.A. Boyd, and N.W. Schrader. Evaluation of methods measuring glomerular and nutrient blood flow in rat kidneys.Am. J. Physiol. 235:H592–600, 1978.

    PubMed  CAS  Google Scholar 

  24. Zimmerhackl, B., R. Dussel, and M. Steinhausen. Influence of furosemide on erythrocyte flow and dynamic hematocrit in single vasa recta of young rat kidneys.Eur. J. Pediatr. 140:166 (Abstract), 1983.

    Google Scholar 

  25. Zimmerhackl, B., N. Parekh, H. Brinkhus, and M. Steinhausen. The use of fluorescent labeled erythrocytes for intravital investigation of flow and local hematocrit in glomerular capillaries in the rat.Int. J. Microcirc. Clin. Exp. 2:119–129, 1983.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. Zimmerhackl is a Research Fellow of the National Kidney Foundation and the National Kidney Foundation of Northern California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamison, R.L., Zimmerhackl, B. & Robertson, C.R. Videomicroscopic method for direct determination of blood flow to the papilla of the kidney. Ann Biomed Eng 13, 273–280 (1985). https://doi.org/10.1007/BF02584244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584244

Keywords

Navigation