Skip to main content
Log in

Electroretinographic changes in eyes with idiopathic macular hole treated by vitrectomy

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We recorded full-field electroretinograms before and after vitrectomy in 18 eyes of 18 patients with idiopathic macular hole. The results were compared between affected and fellow eyes in the preoperative and early (within 10 days) and late (3 to 6 months) postoperative periods. No significant changes between affected and control eyes were found in the amplitude of the rod electroretinogram, mixed cone-rod electroretinogram, cone electroretinogram a-and b-waves or 30-Hz flicker electroretinogram in all stages of the study. The peak implicit times of the cone electroretinogram (a-and b-wave) and dark-and light-adapted oscillatory potential (O1-O4), however, were delayed. Also, the amplitude of the oscillatory potentials (O1+O2+O3+O4) was significantly reduced in the early postoperative period. By the late period, all of these changes had resolved. We concluded that electrophysiologic changes were derived from a transitory dysfunction of the inner retina. The possible causes of the electroretinographic changes would include mechanical trauma of the surgery, intravitreous air tamponade or the changes in vitreous electrolytes after surgery. Oscillatory potentials were more sensitive than a-and b-waves in eliciting dysfunction of the inner retina in operate on eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelly NE, Wendel RT. Vitreous surgery for idiopathic macular holes: results of a pilot study. Arch Ophthalmol 1991; 109: 654–9.

    PubMed  CAS  Google Scholar 

  2. Boldt HC, Munden PM, Folk JC, Mehaffey MG. Visual field defects after macular hole surgery. Am J Ophthalmol 1996; 122: 371–81.

    PubMed  CAS  Google Scholar 

  3. Gass JDM. Idiopathic senile macular holes: its early stages and pathogenesis. Arch Ophthalmol 1988; 106:629–39.

    PubMed  CAS  Google Scholar 

  4. Feghali JG, Jin J, Odom JV. Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 1991; 32: 2184–9.

    PubMed  CAS  Google Scholar 

  5. Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR. Pattern-evoked potentials and optic nerve fiber loss in monoocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 1989; 30: 897–907.

    PubMed  CAS  Google Scholar 

  6. Thompson JT, Smiddy WE, Glaser BM, Sjaarda RN, Flynn HW Jr. Intraocular tamponade duration and success of macular hole surgery. Retina 1996; 16: 373–82.

    Article  PubMed  CAS  Google Scholar 

  7. Thompson JT, Glaser BM, Sjaarda RN, Murphy RP, Hanham A. Effect of intraocular bubble duration in the treatment of macular holes by vitrectomy and trasforming growth factor-beta 2. Ophthalmology 1994; 101: 1195–200.

    PubMed  CAS  Google Scholar 

  8. Tornambe PE, Poliner LS, Grote K. Macular hole surgery without face-down positioning. Retina 1997; 17: 179–85.

    PubMed  CAS  Google Scholar 

  9. Iwasaki T, Iwasaki H, Hishi T, Okada A, Usui M. The retinal changes following intravitreal gas injection in rabbits. ARVO abstracts. Invest Opthalmol Vis Sci 1996; 37(4.suppl): S196.

    Google Scholar 

  10. Bopp S, Lucke K, Hille U. Peripheral visual field loss after vitreous surgery for macular holes. Graefes Arch Clin Exp Ophthalmol 1997; 235: 362–71.

    Article  PubMed  CAS  Google Scholar 

  11. Marmor MF, Arden GB, Nilsson SEG, Zrenner E. Standard for clinical electroretinography. Arch Ophthalmol 1989; 107: 816–9.

    Google Scholar 

  12. Wachtmeister L. Oscillatory potential recordings. In: Heckenlively JR, Arden GB, eds. Principles and practice of clinical electrophysiology of vision. St Louis, Mosby-Year Book, 1991: 322–7.

    Google Scholar 

  13. Wendel RT, Patel AC, Kelly NE, Salzano TC, Wells JW, Novack GD. Vitreous surgery for macular holes. Ophthalmology 1993; 100: 1671–6.

    PubMed  CAS  Google Scholar 

  14. Textorius O, Nilsson SEG. Effect of intraocular irrigation with melatonin on the c-wave of the direct current electroretinogram and on the standing potential of the eye in albino rabbits. Doc Ophthalmol 1987; 65: 97–111.

    Article  PubMed  CAS  Google Scholar 

  15. Textorius O, Nilsson SEG, Andersson BE. Effect of intraocular perfusion with two alternating irrigation solutions on the simultaneously recorded electroretinograrn of albino rabbits. Doc Ophthalmol 1986; 63: 349–58.

    Article  PubMed  CAS  Google Scholar 

  16. Moorhead LC, Redburn DA, Merrit J, Garcia CA. The effect of intravitreal irrigation during vitrectomy on the electroretinogram. Am J Ophthalmol 1979; 88: 239–45.

    PubMed  CAS  Google Scholar 

  17. Meredith TA, Lindsey DT, Edelhauer HF, Goldman AI. Electroretinographic studies following vitrectomy and intraocular silicone oil injection. Br J Ophthalmol 1985; 69: 254–60.

    PubMed  CAS  Google Scholar 

  18. Frumar KD, Gregor ZJ, Carter RM, Arden GB. Electroretinographic changes after vitrectomy and intraocular tamponade. Retina 1985; 5: 16–21.

    Article  PubMed  CAS  Google Scholar 

  19. Gouras P, Mackay CJ, Ivert L, Mittl RN, Neuwirth J, Eggers H. Computer-assisted spectral electroretinography in vitrectomy patients. Ophthalmology 1985; 92: 83–9.

    PubMed  CAS  Google Scholar 

  20. Miyake Y, Yagasaki K, Horiguchi M. Electroretinographic monitoring of retinal function during eye surgery. Arch Ophthalmol 1991; 109: 1123–9.

    PubMed  CAS  Google Scholar 

  21. Honda Y, Negi A, Kawano S, Takahashi Y, Chihara E. Some experimental data concerning the safety of vitrectomy. Acta Ophthalmol 1985; 63: 333–40.

    Article  CAS  Google Scholar 

  22. Cobb WA, Morton HB. A new component of the human electroretinogram. J Physiol 1954; 123: 36–7.

    Google Scholar 

  23. Wachtmeister L. Basic research and clinical aspects of the oscillatory potential of the electroretinogram. Doc Ophthalmol 1987; 66 187–94.

    Article  PubMed  CAS  Google Scholar 

  24. Algvere P, Gjottenberg M. The diagnostic value of the oscillatory potentials of the ERG and fluorescein angiography in diabetic proliferative retinopathy. Ophthalmologica 1974; 168: 97–108.

    Article  PubMed  CAS  Google Scholar 

  25. Yonemura D, Aoki T, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthalmol 1962; 68: 19–24.

    PubMed  CAS  Google Scholar 

  26. Bresnick GH, North K, Groo A, Palta M. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy: preliminary report. Arch Ophthalmol 1984; 102: 1307–11.

    PubMed  CAS  Google Scholar 

  27. Miyake Y, Kawase Y. Reduced amplitude of oscillatory potentials in female carrier of X-linked recessive congenital stationary night blindness. Am J Ophthalmol 1984; 98: 208–15.

    Article  PubMed  CAS  Google Scholar 

  28. Killey FP, Edlhauer HF, Aaberg TA. Intraocular fluid dynamics: measurements following vitrectomy and intraocular sulfur hexafluoride administration. Arch Ophthalmol 1980; 98: 1448–52.

    PubMed  CAS  Google Scholar 

  29. Ezra E, Arden GB, Riordan-Eva P, Aylward GW, Gregor ZJ. Visual field loss following vitrectomy for stage 2 and 3 macular holes. Br J Ophthalmol 1996; 80: 519–25.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, C.S., Tatsukawa, T., Imaizumi, M. et al. Electroretinographic changes in eyes with idiopathic macular hole treated by vitrectomy. Doc Ophthalmol 94, 341–354 (1997). https://doi.org/10.1007/BF02580859

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02580859

Key words

Navigation