Skip to main content
Log in

Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The preferred positions for meiotic double-strand breakage were mapped onSaccharomyces cerevisiae chromosomes I and VI, and on a number of yeast artificial chromosomes carrying human DNA inserts. Each chromosome had strong and weak double-strand break (DSB) sites. On average one DSB-prone region was detected by pulsed-field gel electrophoresis per 25 kb of DNA, but each chromosome had a unique distribution of DSB sites. There were no preferred meiotic DSB sites near the telomeres. DSB-prone regions were associated with all of the known “hot spots” for meiotic recombination on chromosomes I, III and VI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alani E, Padmore R, Kleckner N (1990) Analysis of wild-type andrad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436

    Article  PubMed  CAS  Google Scholar 

  • Barton AB, Kaback DB (1994) Molecular cloning of chromosome I DNA fromSaccharomyces cerevisiae: analysis of the genes in the FUN38-MAK16-SPO7 region. J Bacteriol 176:1872–1880

    PubMed  CAS  Google Scholar 

  • Bussey H, Kaback DB, Zhong W, Vo DT, Clark MW, Fortin N, et al (1995) The nucleotide sequence of chromosome I fromSaccharomyces cerevisiae. Proc Natl Acad Sci USA 92:3809–3813

    Article  PubMed  CAS  Google Scholar 

  • Cherest H, Surdin-Kerjan Y (1992) Genetic analysis of a new mutation conferring cysteine auxotrophy inSaccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130:51–58

    PubMed  CAS  Google Scholar 

  • Coleman KG, Steensma HY, Kaback DB, Pringle JR (1986) Molecular cloning of chromosome I DNA fromSaccharomyces cerevisiae: isolation and characterization of theCDC24 gene and adjacent regions of the chromosome Mol Cell Biol 6: 4516–4525

    PubMed  CAS  Google Scholar 

  • Collins I, Newlon CS (1994) Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell 76:65–75

    Article  PubMed  CAS  Google Scholar 

  • Crowley JC, Kaback DB (1984) Molecular cloning of chromosome I DNA fromSaccharomyces cerevisiae: isolation of the ADE1 gene. J Bacteriol 159:413–417

    PubMed  CAS  Google Scholar 

  • Crowley J, Kaback DB (1989) Cloning of chromosome I DNA fromSaccharomyces cerevisiae: mutational analysis of the FUN2 transcribed region. Gene 83:381–385

    Article  PubMed  CAS  Google Scholar 

  • de Massy B, Nicolas A (1993) The control in cis of the position and the amount of the ARG4 meiotic double-strand break ofSaccharomyces cerevisiae. EMBO J 12:1459–1466

    PubMed  Google Scholar 

  • de Massy B, Baudat F, Nicolas A (1994) Initiation of recombination inSaccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci USA 91:11929–11933

    Article  PubMed  Google Scholar 

  • de Massy B, Rocco V, Nicolas A (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination inSaccharomyces cerevisiae. EMBO J 14:4589–4598

    PubMed  Google Scholar 

  • Dror V (1994) Effects of a recombinogenic yeast DNA sequence, implanted into a pair of heterologous YACs, on meiosis-induced double strand breakage, recombination and YAC segregation. MSc Thesis, Hebrew University of Jerusalem

  • Fan Q, Xu F, Petes TD (1995) Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeastSaccharomyces cerevisiae: control incis andtrans. Mol Cel Biol 15:1679–1688

    CAS  Google Scholar 

  • Fan Q-Q, Petes TD (1996) Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus ofSaccharomyces cerevisiae. Mol Cell Biol 16:2037–2043

    PubMed  CAS  Google Scholar 

  • Game JC (1992) Pulsed-field gel analysis of the pattern of DNA double-strand breaks in theSaccharomyces genome during meiosis. Dev Genet 13:485–497

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson LA, Stahl FW (1994) Initiation of meiotic recombination is independent of interhomologue interactions. Proc Natl Acad Sci USA 91:11934–11937

    Article  PubMed  CAS  Google Scholar 

  • Goldway M, Sherman A, Zenvirth D, Arbel T, Simchen G (1993) A short chromosomal region with major roles in yeast chromosome III meiotic disjunction, recombination and double strand breaks. Genetics 133:159–169

    PubMed  CAS  Google Scholar 

  • Goyon C, Lichten M (1993) Timing of molecular events in meiosis inSaccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase. Mol Cel Biol 13:373–382

    CAS  Google Scholar 

  • Hawley RS, McKim KS, Arbel T (1993) Meiotic segregation inDrosophila melanogaster females: molecules, mechanisms, and myths. Annu Rev Genet 27:281–317

    PubMed  CAS  Google Scholar 

  • Horowitz H, Thorburn P, Haber JE (1984) Rearrangements of highly polymorphic regions near telomeres ofSaccharomyces cerevisiae. Mol Cell Biol 4:2509–2517

    PubMed  CAS  Google Scholar 

  • Hugerat Y, Spencer F, Zenvirth D, Simchen G (1994) A versatile method for efficient YAC transfer between any two strains. Genomics 22:108–117

    Article  PubMed  CAS  Google Scholar 

  • Kaback DB, Steensma HY, Jonge PD (1989) Enhanced meiotic recombination on the smallest chromosome ofSaccharomyces cerevisiae. Proc Natl Acad Sci USA 86:3694–3698

    Article  PubMed  CAS  Google Scholar 

  • Kaback DB, Guacci V, Barber D, Mahone JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256:228–234

    Article  PubMed  CAS  Google Scholar 

  • Kassir Y, Simchen G (1991) Monitoring meiosis and sporulation inSaccharomyces cerevisiae. Methods Enzymol 194:94–110

    PubMed  CAS  Google Scholar 

  • Klein S, Sherman A, Simchen G (1994). Regulation of meiosis and sporulation inSaccharomyces cerevisiae. In: Wessels JGH, Meinhardt F (eds) Growth, differentiation and sexuality, vol I. Springer Berlin Heidelberg New York, pp 235–250

    Google Scholar 

  • Klein S, Zenvirth D, Sherman A, Ried K, Rappold G, Simchen G (1996) Double-strand breaks on YACs during yeast meiosis may reflect meiotic recombination in the human genome. Nat Genet 13:481–484

    Article  PubMed  CAS  Google Scholar 

  • Kopetzki E, Entian K-D, Mecke D (1985) Complete nucleotide sequence of the hexokinase P1 gene (HXK1) ofSaccharomyces cerevisiae. Gene 39:95–102

    Article  PubMed  CAS  Google Scholar 

  • Legrain M, DeWilde M, Hilger F (1986) Isolation, physical characterization and expression analysis of theS. cerevisiae positive regulatory gene PHO4. Nucleic Acids Res 14:3059–3076

    PubMed  CAS  Google Scholar 

  • Link AJ, Olson MV (1991) Physical map of theSaccharomyces cerevisiae genome at 110-kilobase resolution. Genetics 127: 681–698

    PubMed  CAS  Google Scholar 

  • Liu J, Wu T-C, Lichten M (1995) The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J 14:4599–4608

    PubMed  CAS  Google Scholar 

  • Loidl J, Scherthan H, Den Dunnen JT, Klein F (1995) Morphology of a human-derived YAC in yeast meiosis. Chromosoma 104:183–188

    PubMed  CAS  Google Scholar 

  • Louis EJ (1995) The chromosome ends ofSaccharomyces cerevisiae. Yeast 11:1553–1573

    Article  PubMed  CAS  Google Scholar 

  • Malone RE, Bullard S, Lundquist S, Kim S, Tarkowski T (1992) A meiotic gene conversion gradient opposite to the direction of transcription. Nature 359:154–155

    Article  PubMed  CAS  Google Scholar 

  • Malone RE, Kim S, Bullard SA, Lundquist S, Hutchings-Crow L, Cramton S, et al (1994) Analysis of a recombination hotspot for gene conversion occurring at the HIS2 gene ofSaccharomyces cerevisiae. Genetics 137:5–18

    PubMed  CAS  Google Scholar 

  • Matsushita Y, Kitakawa M, Isono K (1989) Cloning and analysis of the nuclear genes for two mitochondrial ribosomal proteins in yeast. Mol Gen Genet 219:119–124

    Article  PubMed  CAS  Google Scholar 

  • McCormick MK, Shero JH, Cheung MC, Kan YW, Hieter P, Antonarakis SE (1989) Construction of human chromosome 21 specific yeast artificial chromosomes. Proc Natl Acad Sci USA 86:9991–9995

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Naitou M, Hagiwara H, Shibata T, Ozawa M, Sasanuma S, et al (1995) Analysis of the nucleotide sequence of chromosome VI fromSaccharomyces cerevisiae. Nat Genet 10:261–268

    Article  PubMed  CAS  Google Scholar 

  • Murray JC, Buetow KH, Weber JL, Ludwigsen S Scherpbier-Heddema T, Manion F, et al (1994) A comprehensive human linkage map with centimorgan density. Science 265:2049–2054

    Article  PubMed  CAS  Google Scholar 

  • Nakayama N, Miyajima A, Arai K (1985) Nucleotide sequences of ste2 and ste3 cell type-specific specific sterile genes fromSaccharomyces cerevisiae. EMBO J 4:2643–2648

    PubMed  CAS  Google Scholar 

  • Neff NF, Thomas JH, Grisafi P, Botstein D (1983) Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219

    Article  PubMed  CAS  Google Scholar 

  • Nicolas A, Treco D, Schyktes NP, Szostak JW (1989) An initiation site for meiotic gene conversion in the yeastSaccharomyces cerevisiae. Nature 338:35–39

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Shibata T, Nicolas A (1994) Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 13:5754–5763

    PubMed  CAS  Google Scholar 

  • Pavan W, Hieter P, Reeves RH (1990) Generation of deletion derivatives by targeted transformation of human-derived yeast artificial chromosomes. Proc Natl Acad Sci USA 87:1300–1304

    Article  PubMed  CAS  Google Scholar 

  • Riles L, Dutchik JE, Baktha A, Mccauley BK, Thayer EC, Leckie MP, et al (1992) Physical maps of the six smallest chromosomes ofSaccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics 134:81–150

    Google Scholar 

  • Schwacha A, Kleckner N (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63

    Article  PubMed  CAS  Google Scholar 

  • Sears DD, Hegemann JH, Hieter P (1992) Meiotic recombination and segregation of human derived artificial chromosomes inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 5296–5300

    Article  PubMed  CAS  Google Scholar 

  • Sears DD, Hieter P, Simchen G (1994) An implanted recombination hot spot stimulates recombination and enhances sister chromatid cohesion of heterologous YACs during yeast meiosis. Genetics 138:1055–1065

    PubMed  CAS  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  PubMed  CAS  Google Scholar 

  • Steensma HY, Crowley JC, Kaback DB (1987) Molecular cloning of chromosome I DNA fromSaccharomyces cerevisiae: isolation and analysis of theCEN1-ADE1-CDC15 region. Mol Cell Biol 7:410–419

    PubMed  CAS  Google Scholar 

  • Steensma HY, Jonge P, Kaptein A, Kaback DB (1989) Molecular cloning of chromosome I DNA fromSaccharomyces cerevisiae: localization of a repeated sequence containing an acid phosphatase gene near a telomere of chromosome I and chromosome VIII. Curr Genet 16:131–137

    Article  PubMed  Google Scholar 

  • Storlazzi A, Xu L, Cau L, Kleckner N (1995) Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc Natl Acad Sci USA 92:8512–8516

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Treco D, Szostak JW (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Vollrath D, Davis RW, Connelly C, Hieter P (1988) Physical mapping of large DNA by chromosome fragmentation. Proc Natl Acad Sci USA 85:6027–6031

    Article  PubMed  CAS  Google Scholar 

  • White MA, Dominska M, Petes TD (1993) Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 90:6621–6625

    Article  PubMed  CAS  Google Scholar 

  • Wu T-C, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263: 515–518

    Article  PubMed  CAS  Google Scholar 

  • Wu T-C Lichten M (1995) Factors that affect the location and frequency of meiosis-induced double-strand breaks inSaccharomyces cerevisiae. Genetics 140:55–66

    PubMed  CAS  Google Scholar 

  • Yochem J, Byers B (1987) Structural comparison of the yeast cell division cycle gene CDC4 and a related pseudogene. J Mol Biol 195:233–245

    Article  PubMed  CAS  Google Scholar 

  • Zakian VA (1995) Telomeres: beginning to understand the end. Science 270:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Zenvirth D, Arbel T, Sherman A, Goldway M, Klein S, Simchen G (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes ofSaccharomyces cerevisiae. EMBO J 11:3441–3447

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Simchen.

Additional information

Edited by: J.-L. Rossignol

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, S., Zenvirth, D., Dror, V. et al. Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma 105, 276–284 (1996). https://doi.org/10.1007/BF02524645

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524645

Keywords

Navigation