Skip to main content
Log in

A cereal centromeric sequence

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We report the identification of a family of sequences located by in situ hybridisation to the centromeres of all theTriticeae chromosomes studied, including the supernumerary and midget chromosomes, the centromeres ofall maize chromosomes and the heterochromatic regions of rice chromosomes. This family of sequences, (CCS1), together with the cereal genome alignments, will allow the evolution of the cereal centromeres and their sites to be studied. The family of sequences also shows homology to the CENP-B box. The centromeres of the cereal species and the proteins that interact with them can now be characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbo S, Dunford RP, Foote T, Reader SM, Flavell RB, Moore G (1995) Organisation of retroelement and stem-loop repeat families in the genomes and nuclei of cerals. Chromosome Res 3: 5–15

    Article  PubMed  CAS  Google Scholar 

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of rice and maize genomes. Proc Natl Acad Sci USA 90: 7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Alfenito MR, Birchler JA (1993) Molecular characterisation of a maize B chromosome centric sequence. Genetics 135: 589–597

    PubMed  CAS  Google Scholar 

  • Bloom K (1993) The centromere frontier: kinetochore components, microtubule-based mobility, and the CEN-value paradox. Cell 73: 621–624

    Article  PubMed  CAS  Google Scholar 

  • Cheung W, Money T, Abbo S, Devos K, Gale M, Moore G (1994) A family of related sequences associated with (TTTAGGG)n repeats are located in the interstitial regions of wheat chromosomes. Mol Gen Genet 245: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Cox AV, Bennett ST, Parokonny AS, Kenton A, Callimassia MA, Bennett MD (1993) Comparison of plant telomere locations using PCR-generated synthetic probe. Ann Bot 72: 239–247

    Article  CAS  Google Scholar 

  • Dunford RP, Kurata N, Luarie DA, Money TA, Minobe Y, Moore G (1995) Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res 23: 2724–2728

    PubMed  CAS  Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosomal evolution in plants. Philos Trans R Soc Lond Biol Sci 312: 227–242

    CAS  Google Scholar 

  • Fukui K, Ijima K (1992) Manual on rice chromosomes. (Publication no. 4) National Institute of Agrobiological Resources, Japan

    Google Scholar 

  • Harrison GE, Heslop-Harrison JS (1995), Centromeric repetitive DNA sequences in the genusBrassica. Theor Appl Genet 90: 157–165

    Article  CAS  Google Scholar 

  • Hutchinson J, Chapman V, Miller TE (1980) Chromosome pairing betweenAegilops andSecale. Heredity 45: 245–254

    Google Scholar 

  • Kamm A, Schimdt T, Heslop-Harrison JS (1994) Molecular and physical organisation of highly repetitive undermethylated DNA fromPennisetum glaucum. Mol Gen Genet 224: 420–425

    Google Scholar 

  • Kipling D, Ackford HE, Taylor BA, Cooke HJ (1991) Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11: 235–241

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Wilson HE, Mitchell AR, Taylor BA, Cooke HJ (1994) Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite. Chromosoma 103: 46–55

    Article  PubMed  CAS  Google Scholar 

  • Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale M (1994) Conservation of genome structure between rice and wheat. Biotechnology 12: 276–278

    Article  CAS  Google Scholar 

  • Larin Z, Fricker MD, Tyler-Smith C (1994)De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum Mol Genet 3: 689–695

    PubMed  CAS  Google Scholar 

  • Lica LM, Narayanswami S, Hamkalo BA (1986) Mouse satellite DNA, centromere structure and sister chromatid pairing. J Cell Biol 103: 1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Yoda K, Ikeno M, Kitagawa K, Muro N, Okazaki T (1993) Properties of CENP-B and its target sequence in a satellite DNA. NATO ASI Series, Heidelberg, Series H 72, pp 31–43

    CAS  Google Scholar 

  • Moore G (1995) Cereal genome evolution: pastoral pursuits with ‘Lego’ genomes. Curr Opin Genet Dev 5: 717–724

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Cheung W, Schwarzacher T, Flavell RB (1991) BIS 1, a major component of the cereal genome and a tool for studying genomic organisation. Genomics 10: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Abbo S, Cheung W, Foote T, Gale M, Koebner R, Leitch AR, Leitch I, Money T, Stancombe P, Yano M, Flavell R (1993) Key features of cereal genome organisation as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics 15: 472–482

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Foote T, Helentjaris T, Devos K, Kurata N, Gale MD (1995a) Was there a single ancestral cereal chromosome? Trends Genet 11: 81–82

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos K, Wang Z, Gale MD (1995b) Gasses line up and form a circle. Curr Biol 5: 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Roberts M, Alcaide L, Foote T (1997) Centromere sites and cereal chromosome evolution. Chromosoma (in press)

  • Rabl (1885) Ueber Zelltheilung. Morphol Jahrb 10: 214–330

    Google Scholar 

  • Rhoades MM (1952) Preferential segregatin in maize. In: Gowen JW (ed) Heterosis. Iowa State Press, Ames, pp 66–80

    Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere fromArabidopsis thaliana. Cell 53: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Robertson IH (1981) Chromosome numbers inBrachypodium Beau (Gramineae). Genetica 56: 55–60

    Article  Google Scholar 

  • Sambrook J, Fritsch EM, Maniatis T (1989) Molecular cloning, Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localisation of parental genomes in awide hybrid. Ann Bot 64: 315–324

    Google Scholar 

  • Schmidt R, West J, Love K, Lenehan Z, Lister C, Thompson H, Bouchez D, Dean C (1995) Physical map and organisation ofArabidopsis thaliana chromosome 4. Science 270: 4480–4483

    Google Scholar 

  • Sullivan KF, Glass CA (1991) CENP-B is a highly conserved mammalian centromere protein with homology to the helixloop-helix family of proteins. Chromosoma 100: 360–370

    Article  PubMed  CAS  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1980) Flora Europea 1980. Cambridge University Press

  • Wang K, Koop BF, Hood L (1994) A simple method using T4 DNA polymerase to clone polymerase chain reaction products. Biotechniques 17: 236–238

    PubMed  CAS  Google Scholar 

  • Willard HF (1990) Centromeres of mammalian chromosomes. Trends Genet 6: 410–415

    Article  PubMed  CAS  Google Scholar 

  • Wu KS, Tanskley SD (1993) Genetical and physical mapping of telomeres and microsatellites of rice. Plant Mol Biol 22: 861–872

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Edited by: W.C. Earnshaw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón-Alcaide, L., Miller, T., Schwarzacher, T. et al. A cereal centromeric sequence. Chromosoma 105, 261–268 (1996). https://doi.org/10.1007/BF02524643

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524643

Keywords

Navigation