Skip to main content
Log in

Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization

  • Research Articles
  • Sites of Transcription and Processing
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We have examined the cytological localization of rRNA synthesis, transport, and processing events within the mammalian cell nucleolus by double-label fluorescent in situ hybridization analysis using probes for small selected segments of pre-rRNA, which have known half-lives. In particular, a probe for an extremely short-lived 5′ region that is not found separate of the pre-rRNA identifies nascent transcripts within the nucleolus of an intact active cell, while other characterized probes identify molecules at different stages in the rRNA processing pathway. Through these studies, visualized by confocal and normal light microscopy, we (1) confirm that rDNA transcription occurs in small foci within nucleoli (2) show that the nascent pre-rRNA transcripts and most likely also the rDNA templates are surprisingly extended in the nucleolus, (3) provide evidence that the 5′ end of the nascent rRNA transcript moves more rapidly away from the template DNA than does the 3′ end of the newly released transcript, and (4) demonstrate that the various subsequent rRNA processing steps occur sequentially further from the transcription site, with each early processing event taking place in a distinct nucleolar subdomain. These last three points are contrary to the generally accepted paradigms of nucleolar organization and function. Our findings also imply that the nucleolus is considerably more complex than the conventional view, inferred from electron micrographs, of only three kinds of regions—fibrillar centers, dense fibrillar components, and granular components—for the dense fibrillar component evidently consists of several functionally distinct sub-domains that correlate with different steps of ribosome biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beven A, Lee R, Razen M, Leader D, Nrown J, Shaw P (1966) The organization of rRNA processing correlates with the distribution of nucleolar snRNAs. J Cell Sci 109:1241–1251

    Google Scholar 

  • Bregman DB, Du L, Zee S van der, Warren SL (1995) Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol 129:287–298

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh AH, Thompson EA (1985) Hormonal regulation of transcription of rDNA: Glucocorticoid effects upon initiation and elongation in vitro. Nucleic Acids Res 13:3357

    PubMed  CAS  Google Scholar 

  • Cerdido A, Medina F (1995) Subnucleolar location of fibrillarin and variation in its levels during the cell cycle and during differentiation in plants. Chromosoma 103:625–634

    PubMed  CAS  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Craig N, Kass, S, Sollner-Webb B (1987) Nucleotide sequence determining the first clearage site in the processing of mouse pre-rRNA. Proc Natl Acad Sci USA 84:629–633

    Article  PubMed  CAS  Google Scholar 

  • Chu S, Archer R, Zengel J, Lindahl L (1994) The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci 91: 659–663

    Article  PubMed  CAS  Google Scholar 

  • Derenzini M, Thiry M, Goessens G (1990) Ultrastructural cytochemistry of the mammalian cell nucleolus. J Histochem Cytochem 9: 1237–1256

    Google Scholar 

  • Derenzini M, Farabegoli F, Trere D (1993) Localization of DNA in the fibrillar components of the nucleolus: a cytochemical and morphometric study. J Histochem Cytochem 41:829–836

    PubMed  CAS  Google Scholar 

  • Dumenco V, Wejksnora P (1986) Characterization of the region around the start point of transcription of ribosomal RNA in the Chinese hamster. Gene 46:227–235

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Raska I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208:275–281

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (1978) High resolution autoradiographic sttudies on chromatin functions. Cell Nucleus 5:3–53

    CAS  Google Scholar 

  • Fischer D, Weisenberger D, Scheer U (1991) Assigning functions to nucleolar structures. Chromosoma 101:133–140

    Article  PubMed  CAS  Google Scholar 

  • Geuskens M, Bernhard W (1969) Cytochimie ultrastructurale du nucléole. Exp Cell Res 44:579–598

    Article  Google Scholar 

  • Goessens G (1976) High resolution autoradiographic studies of Ehrlich tumour cell nuclei. Exp Cell Res 100:88–94

    Article  PubMed  CAS  Google Scholar 

  • Goessens G (1984) Nucleolar structure. Int Rev Cytol 87:107–158

    PubMed  CAS  Google Scholar 

  • Goessens G, LePoint A (1979) The NORs: recent data and hypotheses. Biol. Cellulaire 35:211–220

    Google Scholar 

  • Granboulan N, Granboulan P (1965) Cytochimie ultrastructurale du nucleole. Exp Cell Res 38:604–619

    Article  PubMed  CAS  Google Scholar 

  • Grummt I (1978) In vitro synthesis of pre-rRNA in isolated nucleoli. Cell Nucleus 5:373–412

    CAS  Google Scholar 

  • Gurney T (1985) Characterization of mouse 45S ribosomal RNA subspecies suggests that the first processing cleavage occurs 600±100 nucleotides from the 5′ end and the second 500±100 nucleotides from the 3′ end of a 13.9 kb precursor. Nucleic Acids Res. 13:4905–4919

    PubMed  CAS  Google Scholar 

  • Hadjiolov A (1985) The nucleolus and ribosome biogenesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Harrington C, Chikaraishi D (1987) Transcription of spacer sequences flaking the rat 45S ribosomal DNA gene. Mol Cell Biol 7:314–325

    PubMed  CAS  Google Scholar 

  • Hassan AB, Errington R, White N, Jacksopn D, Cook P (1994) Replication and transcription sites are colocalized in human cells. J Cell Sci 107:425–4334

    PubMed  CAS  Google Scholar 

  • Henderson S, Sollner-Webb B (1986) A transcriptional terminator is a novel element of the promoter of the mouse ribosomal RNA gene. Cell 47:891–900

    Article  PubMed  CAS  Google Scholar 

  • Henderson SL, Ryan K, Sollner-Webb B (1989) The promoterproximal rRNA termination augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in. Genes Dev 3:212–223

    PubMed  CAS  Google Scholar 

  • Hozak P (1995) Catching RNA polymerase I in flagranti: ribosomal genes are transcribed in the dense fibrillar component of the nucleolus. Exp Cell Res 216:285–289

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Cook PR, Schofer C, Mosgoller W, Wachtler F (1994) Sites of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107:639–648

    PubMed  CAS  Google Scholar 

  • Hughes J (1996) Functional base pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit. J Mol Biol 259:645–654

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Ares M (1991) Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-rRNA and impairs formation of 18S rRNA. EMBO J 10:4231–4239

    PubMed  CAS  Google Scholar 

  • Hugle B, Hazen R, Scheer U, Franke W (1985) Localization of ribosomal protein S1 in the GC of the interphase nucleolus and its distribution during mitosis. J Cell Bio 100:873–886

    Article  CAS  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–1065

    PubMed  CAS  Google Scholar 

  • Johnson CV, Singer RH, Lawrence JB (1991) Fluorescent detection of nuclear RNA and DNA: Implication for genome organization. Methods Cell Biol 35:73–99

    PubMed  CAS  Google Scholar 

  • Jordan E (1984) Nucleolar nomenclature. J Cell Sci 67:217–220

    PubMed  CAS  Google Scholar 

  • Jordan EG, Zatsepina O, Shaw P (1992) Widely dispersed DNA within plant and animal nucleoli visualized by 3-d fluorescence microscopy. Chromosoma 101:478–482

    Article  CAS  Google Scholar 

  • Kass, S, Craig N, Sollner-Webb B (1987) Primary processing of mammalian rRNA involves two adjacent cleavages and is not species specific. Mol Cell Biol 7:2891–2898

    PubMed  CAS  Google Scholar 

  • Kass, S, Tyc K, Steitz J, Sollner-Webb B (1990) The U3 small nucleolar ribonucleoprotein functions in the first step of pre-ribosomal RNA processing. Cell 60:897–908

    Article  PubMed  CAS  Google Scholar 

  • Labhart P, Reeder R (1987) Heat shock stabilizes the highly unstable transcripts of theXenopus ribosomal gene spacer. Proc Nat Acad Sci USA 84:56–60

    Article  PubMed  CAS  Google Scholar 

  • Lampert A, Feigelson P (1974) A short lived polypeptide component of one of two discrete functional pools of hepatic nuclear alpha-amanitin resistant RNA polymerases. Biochem Biophys Res Comm 58:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Lawrence J, Singer R, McNeil J (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249:928–932

    Article  PubMed  CAS  Google Scholar 

  • Masson C, Bounoli C, Fompriox N, Szollosi M, Debey P, Hermandez-Verdun D (1996) Conditions favoring RNA polymerase I transcription in permeabilized cells. Exp Cell Res 226:114–125

    Article  PubMed  CAS  Google Scholar 

  • Matera G, Tycowski K, Steitz J, Ward D (1994) Organization of snoRNPs by fluorescence in situ hybridization and immunocytochemistry. Mol Biol Cell 5:1289–1299

    PubMed  CAS  Google Scholar 

  • Melese T, Xue Z (1995) The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324

    Article  PubMed  CAS  Google Scholar 

  • Miller KG, Sollner-Webb B (1981) Transcription of mouse rRNA genes by RNA polymerase I: in vitro and in vivo initiation and processing sites. Cell 27:167–174

    Article  Google Scholar 

  • Miller O Jr (1981) The nucleolus, chromosomes, and visualization of genetic activity. J Cell Biol 91:15s-21s

    Article  PubMed  Google Scholar 

  • Miller O Jr, Beatty B (1969) Visualization of nucleolar genes. Science 164:955–957

    Article  PubMed  Google Scholar 

  • Mirre C, Stahl A (1978) Peripheral RNA synthesis of fibrillar center in nucleoli if Japanese quail oocytes and somatic cells. J Ultrastruct Res 64:377–387

    Article  PubMed  CAS  Google Scholar 

  • Mishima Y, Mishima T, Ogata K (1985) Coupled transcription and processing of mouse rRNA in a cell-free system. EMBO J 4:3879–3886

    PubMed  CAS  Google Scholar 

  • Miwa T, Kaminami R, Yoshikura H, Sudo K, Muramatsu M (1987) Transcription termination and RNA processing in the 3′ end spacer of mouse rRNA genes. Nuc Acids Res 15:2043–2055

    CAS  Google Scholar 

  • Morgan G, Roan J, Baaken A, Reeder R (1984) Variations in transcriptional activity of rDNA spacer promoters. Nuc Acids Res 12:6043–6052

    CAS  Google Scholar 

  • Morrissey J, Tollervey D (1995) Birth of the snoRNAs. TIBS 20:78–82

    PubMed  CAS  Google Scholar 

  • Mougey E, O'Rilley M, Osheim Y, Miller OJ Jr, Beyer A, Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619

    PubMed  CAS  Google Scholar 

  • Ochs R, Lischwe M, Spohn W, Busch H (1985) Fibrillarin: a new protein in the nucleolus identified by autoimmune sera. Biol Cell 54:123–134

    PubMed  CAS  Google Scholar 

  • Peculis B, Steitz JA (1993) Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in theXenopus oocyte. Cell 73:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Puvion E, Moyne G (1981) In situ localization of RNA structures. Cell Nucleus 8:59–115

    CAS  Google Scholar 

  • Puvion-Dutilleul F, Bachellerie J.-P, Puvion E (1991a) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100:395–409

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Mazan S, Nicoloso M, Christensen M, Bachellerie J-P (1991b). Localization pf U3 RNA molecules in nucleoli of HeLa and mouse 3T3 cells by high resolution in situ hybridization. Eur J Cell Biol 56:178–186

    PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Mazan S, Nicoloso M, Pichard E, Bachellerie J-P, Puvion E (1992) Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol 58:149–162

    PubMed  CAS  Google Scholar 

  • Raska I, Reimer G, Jarnik M, Krostrouch Z, Raska K (1989) Does the synthesis of rRNA take place within nucleolar fibrillar centers or dense fibrillar ocomponents? Biol Cell 65:79–82

    Article  PubMed  CAS  Google Scholar 

  • Reimer G, Raska I, Scheer U, Tan E (1988) Immunolocalization of 7-2 RNP in the granular component of the nucleolus. Exp Cell Res 176:117–128

    Article  PubMed  CAS  Google Scholar 

  • Roussel P, Andre CH, Masson C, Geraud G, Hernandez-Verdun D (1993) Localization of RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 104:327–337

    PubMed  CAS  Google Scholar 

  • Royal A, Simard R (1975) RNA synthesis in the ultrastructural and biochemical components of the nucleolus of CHO cells. J Cell Biol 66:577–585

    Article  PubMed  CAS  Google Scholar 

  • Savino R, Gerbi SA (1990) In vivo disruption ofXenopus U3 snRNA affects ribosomal RNA processing. EMBO J 9:2291–2308

    Google Scholar 

  • Schedle A, Willheim M, Zeitelberger A, Gessl A, Frauendorfer K, Schofer C, Wachtler F (1992) Nucleolar morphology and rDNA in situ hubridization in monocytes. Cell Tissue Res 269:473–480

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Rose KM (1984) Localization of RNA polymerase I in nterphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Weisenberger D (1994) The nucleolus Curr Opin Cell Biol 6:354–359

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Thiry M, Goessens G (1993) Structure, function and assembly of the nucleolus. Trends Cell Biol 3:236–241

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M, Clayton D (1993) Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA inSaccharomyces cerevisiae. Mol Cell Biol 13:7935–7941

    PubMed  CAS  Google Scholar 

  • Schofer C, Muller M, Leitner M, Wachtler F (1993) The uptake of uridine in the nucleolus occurs in the dense fibrillar component. Cytogenet Cell Genet 64:27–30

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Highett MI, Beven AF, Jordan EG (1995) The nucleolar architecture of polymerase I transcription and processing. EMBO J 14:2896–2906

    PubMed  CAS  Google Scholar 

  • Sisodia SS, Sollner-Webb B, Cleveland DW (1987) Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol Cell Biol 7:3602–3612

    PubMed  CAS  Google Scholar 

  • Sollner-Webb B, Tyc K, Steitz J (1996) Ribosomal RNA processing in eukaryotes. In: Zimmerman R, Dahlberg A (eds) Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Synthesis. CRC Press, pp. 469–490

  • Strouboulis I, Wolffe A (1996) Functional complementation of the nucleolus. J Cell Sci 109:1991–2000

    PubMed  CAS  Google Scholar 

  • Thiry M (1992) New data concernig the functional organization of the mammalian cell nucleolus: detection of RNA and rRNA by in situ molecular immunocytochemistry. Nuc Acids Res 20:6195–6200

    CAS  Google Scholar 

  • Thiry M (1993) Ultrastructural distribution of DNA and RNA within the nucleolus of human Sertoli cells as seen by molecular immunocytochemistry. J Cell Sci 105:33–39

    PubMed  CAS  Google Scholar 

  • Thiry M, Goessens G (1991) Distinguishing the sites of pre-rRNA synthesis and accumulation in Ehrlich tumor cell nucleoli. J Cell Sci 99:759–767

    PubMed  CAS  Google Scholar 

  • Tower J, Henderson S, Dougherty C, Wejksnora P, Sollner-Webb B (1989) An RNA polymerase I promoter located in the CHO and mouse rDNA spacers. Mol Cell Biol 9:1513–1525

    PubMed  CAS  Google Scholar 

  • Trendelenburg M (1981) Initiations of transcription at distinct promoter sites in spacer regions between pre-rRNA genes in oocytes ofX. laevis. Biol Cell 42:1–12

    CAS  Google Scholar 

  • Wachtler F, Schofer C, Schedle A, Schwarzacher H, Hartung M, Stahl A, Gonzales I, Sylvester J (1991) Transcribed and non-transcribed parts of the human ribosomal gene repeat show a similar distribution in nucleoli. Cytogenet Cell Res 57:175–178

    CAS  Google Scholar 

  • Weisenberger D, Scheer U (1995) A possible mechanism for the inhibition of rRNA gene transcription during mitosis. J Cell Biol 129:561–575

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Sollner-Webb.

Additional information

Edited by: S.A. Gerbi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazdins, I.B., Delannoy, M. & Sollner-Webb, B. Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma 105, 481–495 (1997). https://doi.org/10.1007/BF02510485

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510485

Keywords

Navigation