Skip to main content
Log in

The effects of the dynamic state of the cytoskeleton on neuronal plasticity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The effects of degrading and stabilizing microtubules and microfilaments on the formation of plastic reactions were studied in isolated nerve cells from the molluskLymnaea stagnalis. Degradation of the cytoskeleton affected the performance, retention, and repeated acquisition of plastic reactions. Stabilization of microtubules led to the appearance of a relationship between the dynamics of the development and retention of plastic reactions and the series of stimulation. Stabilization of microfilaments led to transient plastic reaction, along with long-term reactions. These results show that rearrangements of the cytoskeleton have a key role in the processes of neuronal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Sh. Ganelina and T. P. Nekrasova, “Protein kinase C and its role in normal and transformed cells,”Tsitologiya,31, No. 2, 131–147 (1989).

    CAS  Google Scholar 

  2. D. A. Moshkov,Neuron Adaptation and Ultrastructure [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  3. A. S. Ratushnyak, R. A. Zapara, A. A. Zharkikh, and O. A. Tatushnyak, “The effects of changes in dynamic equilibrium in microtubule and microfilament systems on plastic reactions of neurons,”Zh. Vyssh. Nerv. Deyat.,46, No. 2, 355–362 (1995).

    Google Scholar 

  4. V. A. Tkachuk, “The role and position of cyclic nucleotides in the neuroendocrine regulation of cells and tissues,”Biol. Nauki,6, 5–17 (1987).

    PubMed  Google Scholar 

  5. Yu. V. Chistyakova and E. V. Parfenova, “Ca protease—an enzyme involved in the metabolism of cytoskeletal proteins in the olfactory pavement of vertebrates,”Tsitologiya,11, 1345–1352 (1989).

    Google Scholar 

  6. Ch. Aoki and Ph. Siekevitz, “Ontogenetic changes in the cyclic adenosine-3,5-monophosphate-stimulatable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP2): effects of normal and dark rearing and of the exposure to light,”J. Neurosci.,5, No. 9, 2465–2483 (1985).

    PubMed  CAS  Google Scholar 

  7. V. Bennet, K. Gardner, and J. Steiner, “Brain adducin: a protein kinase C substrate that may mediate site-directed assembly at the spectrin-actin junction,”J. Biol. Chem.,263, No. 12, 5860–5869 (1988).

    Google Scholar 

  8. M.-F. Carlier, D. Didry, and D. Pantalone, “Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility,”J. Cell. Biol.,136, No. 6, 1307–1322 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. N. A. Cohen, J. E. Brenman, S. H. Snyder, and D. S. Bredt, “Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation,”Neuron,17, No. 4, 759–767 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. M. R. C. Costa and W. A. Catterall, “Phosphorylation of the α-subunit of the sodium channel by protein kinase C,”Cell. Molec. Neurobiol.,4, No. 3, 291–297 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. S. A. Deriemer, J. A. Strong, K. A. Albert, P. Greengard, and L. K. Haczmarek, “Enhancement of calcium current inAplysia neurones by phorbol ester and protein kinase C,Nature,313, 313–316 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. D. A. Ewald, A. Williams, and I. B. Levitan, “Modulation of single Ca-dependent K-channel activity by protein phosphorylation,”Nature,315, No. 6019, 503–505 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. J. Farley and S. Auerbach, “Protein kinase C activation induces conductance changes inHermissenda photoreceptors like those seen in associative learning,”Nature,319, No. 6050, 220–223 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. S. Hameroff and R. Penrose, “Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness,”Mathemat. Comput. Simulat.,40, No. 3-4, 453–480 (1996).

    Article  Google Scholar 

  15. B. D. Johnson and L. Byerly, “Ca channel Ca2+-dependent inactivation in a mammalian central neuron involves the cytoskeleton,”Pflügers Arch.,429, No. 1, 14–21 (1994).

    PubMed  CAS  Google Scholar 

  16. M. Karin and T. Smeal, “Control of transcription factors by signal transduction pathway: the beginning of the end,”TIBS,17, 418–422 (1992).

    PubMed  CAS  Google Scholar 

  17. A. Moon and D. G. Drubin, “The ADF/cofilin proteins: stimulus-responsive modulations of actin dynamics,”Mol. Biol. Cell.,6, 1423–1431 (1995).

    PubMed  CAS  Google Scholar 

  18. E. J. Neer and D. E. Clapham, “Roles of G protein subunits in trans-membrane signalling,”Nature,333, No. 6169, 129–134 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. L. S. Perlmutter, C. Gall, M. Baudry, and G. Lynch, “Distribution of calcium-activated and protease calpain in the brain,”J. Comp. Neurol.,296, No. 2, 269–276 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. R. Prekeris, M. W. Mayhew, J. B. Cooper, and D. M. Terrian, “Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in regulation of synaptic function,”J. Cell. Biol.,132, No. 1-2, 77–90 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. E. M. Quinlan and S. Halpaint “Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development,”Neurosci.,16, No. 23, 7627–7637 (1996).

    CAS  Google Scholar 

  22. C. Rosenmund and G. L. Westbrook, “Calcium-induced actin depolymerization reduces NMDA channel activity,”Neuron,10, No. 5, 805–814 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. Ch. V. Schuster, G. W. Davis, R. D. Fitter, and C. S. Goodman, “Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity,”Neuron 17, 655–667 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. P. Vanderklish, T. C. Saido, C. Gall, A. Arai, and G Lynch, “Proteolysis of spectrin by calpain accompanies theta-burst stimulation in cultured hippocampal slices,”Brain Res. Mol. Brain,32, 25–35 (1995).

    Article  CAS  Google Scholar 

  25. M. H. Wolf, H. Levine, W. S. May, P. Cuatrecasas, and N. A. Sahyoun, “A model for intracellular translocation of protein kinase C involving synergism between Ca and phorbol esters,”Nature,317, 546–549 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. C. Wu, V. M. Keivens, T. E. O'Toole, J. A. McDonald, and M. H. Ginsberg, “Integrin activation and cytoskeletal interaction are critical steps in the assembly of a fibronectin matrix,”Cell,83, 715–724 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. T. N. Yamoah and T. Crow, “Protein kinase and G-protein regulation of Ca currents inHermissenda photoreceptors by 5-HT and GABA,”J. Neurosci.,16, No. 15, 4799–4809 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 85, No. 1, pp. 128–138, January, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapara, T.A., Simonova, O.G., Zharkikh, A.A. et al. The effects of the dynamic state of the cytoskeleton on neuronal plasticity. Neurosci Behav Physiol 30, 347–355 (2000). https://doi.org/10.1007/BF02471789

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02471789

Key Words

Navigation