Skip to main content
Log in

Prediction of the resistance of human tumors to adriamycin by chemosensitivity tests and DNA analysis of the multidrug resistance gene

  • Original Articles
  • Published:
The Japanese journal of surgery Aims and scope Submit manuscript

Abstract

In order to predict natural resistance to Adriamycin (ADM), the amplification of multidrug resistance gene 1 (MDR1) was investigated in 50 human cancer specimens using Southern blot analysis. Genomic DNA was extracted from both human solid tumors and adjacent normal tissues for the analysis. MDR1 gene amplification was not observed in any of the patients tested, including 5 patients in whom ADM was not clinically effective. On the other hand, chemosensitivity tests performed on the tumor cells of these 5 patients indicated resistance to ADM. Our results therefore indicate that MDR1 gene amplification is rarely seen among clinical samples and that conventional chemosensitivity tests might be more useful for the prediction of ADM resistance in cancer patients than the analysis of MDR1 gene amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck WT. The cell biology of multiple drug resistance. Biochemi Pharmacol 1987; 36: 2879–2889.

    Article  CAS  Google Scholar 

  2. Pastan I, Gottesman M. Multiple-drug resistance in human cancer. N Engl J Med 1987; 316: 1383–1393.

    Google Scholar 

  3. Juliano RL, Ling VA. Surface glycoprotein modulatory permeability in Chinese hamster ovary cell mutants. Biochem Biophys Acta 1976; 455: 152–162.

    PubMed  CAS  Google Scholar 

  4. Garman D, Center MS. Alterations in cell surface membranes in Chinese hamster lung cells resistant to Adriamycin. Biochem Biophys Res Commun 1982; 105: 157–163.

    Article  PubMed  CAS  Google Scholar 

  5. Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983; 221: 1286–1288.

    Google Scholar 

  6. Gros P, Ben-Neriah Y, Croop J, Housman DE. Isolation and expression of a cDNA (mdr) that confers multidrug resistance. Nature 1986; 323: 728–731.

    Article  PubMed  CAS  Google Scholar 

  7. Scotto KW, Biedler JL, Melera PW. Amplification and expression of gene associated with multidrug resistance in mammalian cells. Science 1986; 232: 751–755.

    PubMed  CAS  Google Scholar 

  8. Gerlach JH, Kartner N, Bell DR, Ling V. Multidrug resistance. Cancer Surv 1986; 5: 25–46.

    PubMed  CAS  Google Scholar 

  9. Riordan JR, Ling V. Genetic, biochemical characteristics of multidrug resistance. Pharmacol Ther 1985; 28: 51–75.

    Article  PubMed  CAS  Google Scholar 

  10. Akiyama S, Fojo A, Hanover JA, Pastan I, Gettesman MM. Isolation and genetic characterization of human KB cell line resistant to multiple drugs. Somatic Cell Mol Genet 1985; 11: 117–126.

    Article  PubMed  CAS  Google Scholar 

  11. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98: 503–517.

    Article  PubMed  CAS  Google Scholar 

  12. Maniatis T, Fritsch EF, Sambrook J. Molecular cloning A Laboratory Manual 1982: 191–193. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  13. Semba K, Nishizawa M, Miyajima N, Yoshida MC, Sukegawa J, Yamanashi Y, Sasaki M, Yamamoto T, Toyoshima K. Yes-related protooncogene, syn, belongs to protein-tyrosine kinase family. Proc Acad Sci 1986; 83: 5459–5463.

    Article  CAS  Google Scholar 

  14. Rigby PW, Dieckmann M, Rhodes C, Berg P. Labelling deoxyribonucleic acid to high specific activityin vitro by nick translation with DNA polymerase I. J Mol Biol 1977; 113: 237–251.

    Article  PubMed  CAS  Google Scholar 

  15. Feinberg AP, Vogelstein B. A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 1983; 132: 6–13.

    Article  PubMed  CAS  Google Scholar 

  16. Noso Y, Niimi K, Nishiyama M, Hirabayashi N, Toge T, Niimoto M, Hattori T. Clinical study on a new screening assay for anticancer agents using nude mice and isotopic evaluation. Cancer Res 1987; 47: 6418–6422.

    PubMed  CAS  Google Scholar 

  17. Nishiyama M, Noso Y, Hirabayashi N, Yamaguchi M, Toge T, Niimoto M, Hattori T. Prediction of individual tumor chemosensitivity in subrenal capsule assay. Jpn J Surg 1986; 16: 257–261.

    Article  PubMed  CAS  Google Scholar 

  18. Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, Gottesman MM. Human multidrug-resistance cell lines: Increased MDR1 expression can precede gene amplification. Science 1986; 232: 643–645.

    PubMed  CAS  Google Scholar 

  19. Scudder SA, Roninson IB, Davatelis G, Fukumoto M, Sikic B. Increased expression of the MDR1 gene in multidrug resistant variants of human sarcoma cells. Proc Am Assoc Clin Oncol 1987; 6: 13–18.

    Google Scholar 

  20. Bell DR, Gerlach JH, Kartner N, Buick RN, Ling V. Detection of P-glycoprotein in ovarian cancer: Amolecular marker associated with multidrug resistance. J Clin Oncol 1985; 3: 311–315.

    PubMed  CAS  Google Scholar 

  21. Hamada H, Tsuruo T. Functional role for the 170-to 180-kDa glycoprotein specific to drug-resistance tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci 1986; 83: 7785–7789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, R., Saeki, T., Takagami, Si. et al. Prediction of the resistance of human tumors to adriamycin by chemosensitivity tests and DNA analysis of the multidrug resistance gene. The Japanese Journal of Surgery 20, 192–196 (1990). https://doi.org/10.1007/BF02470768

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02470768

Key Words

Navigation