Skip to main content
Log in

Hierarchically coupled ultradian oscillators generating robust circadian rhythms

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Ensembles of mutually coupled ultradian cellular oscillators have been proposed by a number of authors to explain the generation of circadian rhythms in mammals. Most mathematical models using many coupled oscillators predict that the output period should vary as the square root of the number of participating units, thus being inconsistent with the well-established experimental result that ablation of substantial parts of the suprachiasmatic nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt circadian functions, which show no changes in the phases or periods of the rhythms. From these observations, we have developed a theoretical model that exhibits the robustness of the circadian clock to changes in the number of cells in the SCN, and that is readily adaptable to include the successful features of other known models of circadian regulation, such as the phase response curves and light resetting of the phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar-Roblero, R., J. L. Chávez and M. Díaz-Muñoz. 1996. Circadian modulation of intracellular Ca++ release channel (Ryanodine receptor) in the suprachiasmatic nuclei.Fifth Meeting Soc. for Research on Biological Rhythms, Jacksonville, Florida, p. 63 (abstract).

  • Bos, N. P. A. and M. Mirmiran. 1990. Circadian rhythms in spontaneous neuronal discharges of the cultured suprachiasmatic nucleus.Brain Res. 511, 158–162.

    Article  Google Scholar 

  • Carpenter, G. A. and S. M. Grossberg. 1983. Mammalian circadian rhythms. InOscillations in Mathematical Biology, J. P. E. Hodgson (Ed), pp. 102–196. Berlin: Springer-Verlag.

    Google Scholar 

  • Davis, F. C. and R. A. Gorski. 1984. Unilateral lesions of the hamster suprachiasmatic nuclei: evidence for redundant control of circadian rhythms.J. Comp. Physiol. A 154, 221–232.

    Article  Google Scholar 

  • Drucker-Colín, R., R. Aguilar-Roblero, F. Garcia-Hernández, F. Fernández-Cancino and F. Bermúdez-Rattoni. 1984. Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats.Brain Res. 311, 353–357.

    Article  Google Scholar 

  • Earnest, D. J., S. M. Digiorgio and C. D. Sladek. 1991. Effects of tetrodotoxin on the circadian pacemaker mechanism in suprachiasmatic explants in vitro.Brain Res. Bull. 26, 677–682.

    Article  Google Scholar 

  • Edery, I., J. E. Rutila and M. Roshbach. 1994. Phase shifting of the circadian clock by induction of the Drosophial period protein.Science 237, 237–240.

    Google Scholar 

  • Enright, J. T. 1980. Temporary precision in circadian systems: a reliable neuronal clock from unreliable components?Science 209, 1542–1545.

    Google Scholar 

  • Gekakis, N., L. Saez, A.-M. Delahaye-Brown, M. P. Myers, A. Sehgal, M. W. Young, C. J. Weitz. 1995. Isolation oftimeless by PER protein interaction: defective interaction betweentimeless protein and long-period mutant PER.Science 270, 811–815.

    Google Scholar 

  • Giaume, C. and K. D. McCarthy. 1996. Control of gap-junctional communication in astrocytic networks.Trends Neurosci. 19, 319–325.

    Article  Google Scholar 

  • Gillette, M. U. 1991. SCN electrophysiology in vitro: rhythmic activity and endogenous clock properties. InSuprachiasmatic Nucleus the Mind's Clock, D. C. Klein, R. Y. Moore and S. M. Reppert (Eds), ch. 6, pp. 125–143. New York: Oxford University Press.

    Google Scholar 

  • Gradshteyn, I. S. and I. M. Ryzhik. 1980.Table of Integrals, Series, and Products, ch. 8.17, pp. 921–925. New York: Academic Press.

    MATH  Google Scholar 

  • Hardin, P. E., J. C. Hall and M. Rosbach. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels.Nature 343, 536–540.

    Article  Google Scholar 

  • Inouye, S. I. T. and H. Kawamura. 1979. Persistence of circadian rhythmicity in the mammalian hypothalamic “island” containing the suprachiasmatic nucleus.Proc. Natl. Acad. Sci. USA 76, 5962–5966.

    Article  Google Scholar 

  • Konopka, R. J. and S. Benzer. 1971. Clock mutants ofDrosophila melanogaster.Proc. Natl. Acad. Sci. 68, 2112.

    Article  Google Scholar 

  • Lee, C., V. Vaishali, T. Itsukaichi, K. Bae and I. Edery. 1996. Resetting theDrosophila clock by photic regulation of PER and a PER-TIM complex.Science 271, 1740–1741.

    Google Scholar 

  • Lehman, M. N., R. Silver, W. R. Gladstone, R. M. Kahn, M. Gibson and E. L. Bittman. 1987. Circadian rhythmicity restored by neural trasplant. Immunocytochemical characterization of the graft and its interaction with host brain.J. Neurosci. 7, 1626–1638.

    Google Scholar 

  • Matthews, P. C., R. E. Mirollo and S. H. Strogatz. 1991. Dynamics of a large system of coupled nonlinear oscillators.Physica D 52, 293–331.

    Article  MATH  MathSciNet  Google Scholar 

  • Meijer, J. H. and W. J. Rietveld. 1989. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents.Physiol. Rev. 69, 671–707.

    Google Scholar 

  • Moore, R. Y. 1992. The suprachiasmatic nucleus and the circadian timing system. InCircadian Rhythms, Discussions in Neuroscience, P. J. Magistratti (Ed), Vol. 8, Nos. 2–3, ch. 5, pp. 26–33 Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  • Mosko, S. S. and R. Y. Moore. 1979. Neonatal suprachiasmatic nucleus lesions.Brain Res. 164, 17–38.

    Article  Google Scholar 

  • Myers, M. P., K. Wagner-Smith, A. Rothenfluh-Hilfiker and M. W. Young. 1996. Lightinduced degradation of theDrosophila circadian clock.Science 271, 1736–1740.

    Google Scholar 

  • Newman, G. C., F. E. Hospod, C. S. Patlak and R. Y. Moore. 1992. Analysis of in vitro glucose utilization in a circadian pacemaker model.J. Neurosci. 12, 2015–2021.

    Google Scholar 

  • Othmer, H. G. and M. Watanabe. 1992. Novel mechanism for generating circadian periods from fast oscillators. InAbst. of the 2nd Annual Conf. of the Japan Soc. for Industrial and Applied Math., pp. 1–2.

  • Pavlidis, T. 1969. Populations of interacting oscillators and circadian rhythms.J. Theor. Biol. 22, 418–436.

    Article  Google Scholar 

  • Pavlidis, T. 1975. Spatial organization of chemical oscillators via an averaging operator.J. Chem. Phys. 63, 5269–5273.

    Article  Google Scholar 

  • Pavlidis, T. 1992. Mathematical models. InHandbook of Behavioral Neurobiology, J. F. Aschoff (Ed), Vol. 4, ch. 4, pp. 41–54. New York: Plenum Press.

    Google Scholar 

  • Pittendrigh, C. S. 1974. Circadian organization in cells and the circadian organization of the multicellualr system. InNeurosciences Third Study Program, S. O. Schmitt and F. G. Worden (Eds). Cambridge, MA: MIT Press.

    Google Scholar 

  • Prosser, R. E., J. D. Miller and H. C. Heller. 1990. Sertonin agonist phase-shifts in circadian clock in the suprachiasmatic nucleiin vitro.Brain Res. 534, 336–339.

    Article  Google Scholar 

  • Ralph, M. R., R. G. Foster, F. D. Davis and M. Menaker. 1990. Transplanted suprachiasmatic nucleus determines circadian period.Science Wash. DC 247, 975–978.

    Google Scholar 

  • Schwartz, W. J., R. A. Gross and M. T. Morton. 1987. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker.Proc. Natl. Acad. Sci. USA 84, 1694–1698.

    Article  Google Scholar 

  • Sehgal, A., J. L. Price, B. Mam and M. W. Young. 1994. Loss of circadian behavioral rhythms andper RNA oscillation in theDrosophila mutanttimeless.Science 263, 1603.

    Google Scholar 

  • Sehgal, A., A. Rothenfluh-Hilfiker, M. Hunter-Ensor, Y. Chen, M. P. Myers and M. W. Young. 1995. Rhythmic expression oftimeless: a basis for promoting circadian cycles inperiod gene autoregulation.Science 270, 808–810.

    Google Scholar 

  • Shibata, S., Y. Oomura, S. Y. Liou and S. Ueki. 1984. Electrophysiological studies of the development of suprachiasmatic neuronal activities in hypothalamic slice preparation.Brain Res. 13, 29–35.

    Article  Google Scholar 

  • Thomson, A. M., D. C. West and I. G. Vlachonikolis. 1984. Regular firing of suprachiasmatic neurons maintainedin vitro.Neurosci Lett. 52, 329–334.

    Article  Google Scholar 

  • Van den Pol, A. N. and T. P. Powley. 1979. A fine grained anatomical analysis of the role of the rat suprachiasmatic nucleus in circadian rhythms of feeding and drinking.Brain Res. 160, 307–326.

    Article  Google Scholar 

  • Van den Pol, A. N. 1980. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy.J. Comp. Neurol. 191, 661–702.

    Article  Google Scholar 

  • Van den Pol, A. N., S. M. Pinkbeiner and A. H. Cornell-Bell. 1992. Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro.J. Neurosci. 12, 2649–2664.

    Google Scholar 

  • Verkhratsky, A. and H. Kettenmann. 1966. Calcium signalling in glial cells.Trends Neurosci. 19, 346–352.

    Article  Google Scholar 

  • Vosshall, L. B., J. L. Price, A. Sehgal, L. Saez and M. W. Young. 1994. Block in nuclear localization ofperiod protein by a second clock mutation,timeless.Science 263, 1606.

    Google Scholar 

  • Watanabe, K., N. Koibuchi, H. Ohtake and S. Yamaoka. 1993. Circadian rhythms of vasopressin release in primary cultures of rat suprachiasmatic nucleus.Brain Res. 624, 115–120.

    Article  Google Scholar 

  • Welsh, D. K., D. E. Logothetis, M. Meister and S. Reppert. 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms.Neuron 14, 697–706.

    Article  Google Scholar 

  • Winfree, A. T. 1967. Biological rhythms and the behavior of population of coupled oscillators.J. Theor. Biol. 16 15–42.

    Article  Google Scholar 

  • Winfree, A. T. 1975. Unclocklike behavior of biological clocks.Nature 253, 315–319.

    Article  Google Scholar 

  • Zhang, L. and R. Aguilar-Roblero. 1995. Asymmetrical electrical activity between the suprachiasmatic nuclei in vitro.NeuroReport 6, 537–540.

    Article  Google Scholar 

  • Zhang, L., R. Aguilar-Roblero, R. A. Barrio and P. K. Maini. 1995. Rhythmic firing patterns in suprachiasmatic nucleus (SCN): the rôle of circuit interactions.Int. J. Bio-med. Comp. 38, 23–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrio, R.A., Zhang, L. & Maini, P.K. Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bltn Mathcal Biology 59, 517–532 (1997). https://doi.org/10.1007/BF02459463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459463

Keywords

Navigation