Skip to main content
Log in

The 3′→5′ exonuclease associated with HeLa DNA polymerase epsilon

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, H., Ropp, P.A., Johnson, A.L., Johnston, L.H., Morrison, A. and Sugino, A. (1992) DNA polymerase II, the probable homolog of mammalian DNA polymerase epsilon, replicates chromosomal DNA in the yeastSaccharomyces cerevisiae. EMBO J. 11, 733–740.

    PubMed  CAS  Google Scholar 

  • Bambara, R.A. and Jessee, C.B. (1991) Properties of DNA polymerases δ and ɛ, and their roles in eukaryotic DNA replication. Biochim. Biophys. Acta 1088, 11–24.

    PubMed  CAS  Google Scholar 

  • Cotteril, S.M., Reyland, M.E., Loeb, L.A. and Lehman, I.R. (1987) A cryptic proofreading 3′–5′ exonuclease associated with the polymerase subunit of the DNA polymerase-primase fromDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 84, 5635–5639.

    Article  Google Scholar 

  • Crute, J.J., Wahl, A.F. and Bambara, R.A. (1986) Purification and characterization of two new high molecular weight forms of DNA polymerase delta. Biochemistry 25, 26–36.

    Article  PubMed  CAS  Google Scholar 

  • Echols, H. & Goodman, M. (1991) Fidelity mechanism in DNA replication. Annu. Rev. Biochem. 14, 477–511.

    Article  Google Scholar 

  • Focher, F., Spadari, S., Ginelli, B., Hottiger, M., Grassmann, M. and Hübscher, U. (1988) Calf thymus DNA polymerase δ: purification, biochemical and functional properties of the enzyme after its separation from DNA polymerase α, a DNA dependent ATPase and proliferating cell nuclear antigen. Nucl. Acids Res. 14, 6279–6295.

    Google Scholar 

  • Hübscher, U. and Thömmes P. (1992) DNA polymerase epsilon: in search of a function. TIBS 17, 55–58.

    PubMed  Google Scholar 

  • Kesti, T. and Syväoja, J.E. (1991) Identification and tryptic cleavage of the catalytic core of HeLa and calf thymus DNA polymerase ɛ. J. Biol Chem. 266, 6336–6341.

    PubMed  CAS  Google Scholar 

  • Kornberg, A. and Baker, T.A., DNA replication. Freeman 1991, New York, USA.

    Google Scholar 

  • Lee, M.Y.W.T., Tan, C.-K., Downey, K.M. and So, A.G. (1984) Further studies on calf thymus DNA polymerase δ purified to homogenity by a new procedure. Biochemistry 23, 1906–1913.

    Article  PubMed  CAS  Google Scholar 

  • Linn, S. (1991) How many pols does it take to replicate nuclear DNA? Cell 66, 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, C., Reinhard, P. and Linn, S. (1988) DNA repair synthesis in human fibroblasts requires DNA polymerase δ. J. Biol. Chem. 263, 501–510.

    PubMed  CAS  Google Scholar 

  • Nickel, W., Austermann, S., Bialek, G., and Grosse, F. (1992) Interactions of azidothymidine triphosphate with the cellular DNA polymerases α, δ and ɛ and with DNA primase. J. Biol. Chem. 267, 848–854.

    PubMed  CAS  Google Scholar 

  • Sabatino, R.D. and Bambara, R.A. (1988) Properties of the 3′ to 5′ exonuclease associated with calf DNA polymerase delta, Biochem. 27, 2266–2271.

    Article  CAS  Google Scholar 

  • Sabatino, R.D., Myers, T.W., Bambara, R.A. (1990) Substrate specificity of the exonuclease associated with calf DNA polymerase epsilon, Cancer Res. 50, 5340–5344.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. and Maniatis, T. (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Siegal, G., Turchi, J.J., Jessee, C.B., Mallaber, L.M., Bambara, R.A. and Myers, T.W. (1992) Structural relationships between two forms of DNA polymerase epsilon from calf thymus. J. Biol. Chem. 267, 3991–3999.

    PubMed  CAS  Google Scholar 

  • Smith, H.O. (1980) Recovery of DNA from gels. Methods Enzymol. 65, 371–391.

    Article  PubMed  CAS  Google Scholar 

  • Syväoja, J.E. (1990) DNA polymerase epsilon: the latest member in the family of mammalian DNA polymerases. BioEssays 12, 533–536.

    Article  PubMed  Google Scholar 

  • Syväoja, J.E. and Linn, S. (1989) Characterization of a large form of DNA polymerase δ from HeLa cells that is insensitive to proliferating cell nuclear antigen. J. Biol. Chem. 264, 2489–2497.

    PubMed  Google Scholar 

  • Thömmes, P. and Hübscher, U. (1990) Eukaryotic DNA replication. Eur. J. Biochem. 194, 699–712.

    Article  PubMed  Google Scholar 

  • Wang, T.S.-F. (1991) Eukaryotic DNA polymerases. Annu. Rev. Biochem. 60, 513–552.

    Article  PubMed  CAS  Google Scholar 

  • Weiser, T., Gassmann, M., Thömmes, P., Ferrari, E., Hafkemeyer, P., and Hübscher, U. (1991) Biochemical and functional comparison of DNA polymerases α, δ and ɛ from calf thymus. J. Biol. Chem. 266, 10420–10428.

    PubMed  CAS  Google Scholar 

  • Yang, C.-L., Chang, L.-S., Zhang, P., Hao, H., Zhu, L., Toomey, N.L. and Lee, M.Y.W.T. (1992) Molecular cloning of the catalytic subunit of human DNA polymerase δ. Nucl. Acids Res. 20, 735–745.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Chung, D.W., Tan, C.-K., Downey, K.M., Davie, E.W. and So, A.G. (1991) Primary structure of the catalytic subunit of calf thymus DNA polymerase δ: sequence similarities with other DNA polymerases. Biochem. 30, 11742–11750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uitto, L., Halleeen, J., Remes, P. et al. The 3′→5′ exonuclease associated with HeLa DNA polymerase epsilon. Chromosoma 102 (Suppl 1), S142–S146 (1992). https://doi.org/10.1007/BF02451798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451798

Keywords

Navigation