Skip to main content
Log in

Distribution of nitric oxide synthase-containing nerves in the aganglionic intestine of mutant rats: A histochemical study

  • Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

We examined the distribution of nerves containing nitric oxide synthase in the intestine of congenitally aganglionic rats, using a reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemical method for whole-mount and cryostat specimens. A constricted intestinal segment extends from the terminal ileum to the anus in this mutant. No nerve elements with the activity were found in the affected terminal ileum, cecum, and proximal colon. Although intrinsic ganglionic neurons were absent along the constricted intestine, nerve fibers with the activity were found in both the submucous and intermuscular layers distal to the proximal colon. These fibers increased in density towards the rectum, forming hypertrophic nerve bundles and unusual fiber networks. However, positive fibers were never seen within the circular and longitudinal musculature of the constricted lesion. Some of these hypertrophic nerve bundles were continuous with ectopic ganglia that were situated in the adventitial connective tissue around the lower rectum and in the submucosa near the anus. The hypertrophic nerve bundles seemed to have an extrinsic origin; some of them may have originated from ectopic ganglia. These results suggest that the defective distribution of nerves containing nitric oxide synthase may be involved in the pathogenesis of congenital colonic aganglionosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garver KL, Law CJ, Garver B. Hirschsprung's disease: A genetic study. Clin Genet 1985;28:503–508.

    CAS  PubMed  Google Scholar 

  2. Larsson LT. Hirschsprung's disease—immunohistochemical findings. Histol Histopathol 1994;9:615–629.

    CAS  PubMed  Google Scholar 

  3. Bishop AE, Polak JM, Lake BD, et al. Abnormalities of the colonic regulatory peptides in Hirschspring's disease. Histopathology 1981;5:679–699.

    CAS  PubMed  Google Scholar 

  4. Taguchi T, Tanaka K, Ikeda K, et al. Peptidergic innervation irregularities in Hirschsprung's disease. Virchows Arch [A] 1983;401:223–235.

    CAS  Google Scholar 

  5. Larsson LT, Malmfors G, Ekblad E, et al. NPY hyperinnervation in Hirschsprung's disease: Both adrenergic and nonadrenergic fibers contribute. Pediatr Surg 1991;26:1207–1214.

    CAS  Google Scholar 

  6. Rothman TP, Gershon MD. Regionally defective colonization of the terminal bowel by the precursors of enteric neurons in lethal spotted mutant mice. Neuroscience 1984;12:1293–1311.

    Article  CAS  PubMed  Google Scholar 

  7. Vaillant C, Bu'lock A, Dimaline R, et al. Distribution and development of peptidergic nerves and gut endocrine cells in mice with congenital aganglionic colon, and their normal littermates. Gastroenterology 1982;82:291–300.

    CAS  PubMed  Google Scholar 

  8. Webster W. Embryogenesis of the enteric ganglia in normal mice and in mice that develop congenital aganglionic megacolon. J Embryol Exp Morphol 1973;30:573–585.

    CAS  PubMed  Google Scholar 

  9. Horie H, Ikadai H, Iwasaki I, et al. Pathologic studies on newly established congenital aganglionosis rat in Japan (in Japanese with English abstract). J Jpn Soc Ped Surg 1980;16:549–560.

    Google Scholar 

  10. Domoto T, Oki M, Gonda T, et al. Distribution of neves containing vasoactive intestinal polypeptide-like immunoreactivity in rats with congenital aganglionosis of the colon. Neurosci Res 1987;4:309–315.

    Article  CAS  PubMed  Google Scholar 

  11. Gonda T, Oki M. Distribution of cholinergic and catecholaminergic nerves in the colon of the rat with aganglionosis. Exp Anim 1991;40:471–484.

    CAS  Google Scholar 

  12. Domoto T, Yang H, Bishop AE, et al. Distribution and origin of extrinsic nerve fibers containing calcitonin gene-related peptide, substance P and galanin in the rat upper rectum. Neurosci Res 1992;15:64–73.

    Article  CAS  PubMed  Google Scholar 

  13. Domoto T, Gonda T, Oki M. Distribution of extrinsic nerves containing vasoactive intestinal polypeptide-like immunoreactivity in the aganglionic bowel of the congenital aganglionosis rats. Biomed Res (India) 1992;3(1):65–77.

    Google Scholar 

  14. Hirose R, Nada O, Kawana T, et al. The intramural pelvic nerves immunoreactive for calcitonin gene-related peptide in the rectum of normal and aganglionosis rat. Anat Embryol 1993;187:37–44.

    Article  CAS  PubMed  Google Scholar 

  15. Domoto T, Zhang WB, Tsumori T, et al. Distribution of extrinsic enkephalin-containing nerve fibers in the rat rectum and their origin in the major pelvic ganglion. J Auton Nerv Syst 1994;49:135–146.

    Article  CAS  PubMed  Google Scholar 

  16. Vanderwinden JM, De Laet MH, Schiffmann SN, et al. Nitric oxide synthase distribution in the enteric nervous system of Hirschpsprung's disease. Gastroenterology 1993;105:969–973.

    CAS  PubMed  Google Scholar 

  17. Cuffari C, Rubin SZ, Krantis A. Routine use of the nitric oxide stain in the differential diagnosis of Hirschsprung's disease. J Pediatr Surg 1993;28:1202–1204.

    Article  CAS  PubMed  Google Scholar 

  18. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide froml-arginine. Nature 1988;333:664–666.

    Article  CAS  PubMed  Google Scholar 

  19. Furness JB, Bornstein JC, Murphy R, et al. Roles of peptides in transmission in the enteric nervous system. Trends Neurosci 1992;15:66–71.

    Article  CAS  PubMed  Google Scholar 

  20. Stark ME, Szurszewski JH. Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology 1992;103:1928–1949.

    CAS  PubMed  Google Scholar 

  21. Ikadai H, Fujita H, Agematsu Y, et al. Observation of congenital aganglionosis rat (Hirschsprung's disease rat) and its genetical analysis (in Japanese with English abstract). Cong Anom 1979; 19:31–36.

    Google Scholar 

  22. Dawson TM, Bredt DS, Fotuhi M, et al. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 1991;88:7797–7801.

    CAS  PubMed  Google Scholar 

  23. Belai A, Schmidt HHHW, Hoyle CHV, et al. Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci Lett 1992;143:60–64.

    Article  CAS  PubMed  Google Scholar 

  24. McConalogue K, Furness JB. Projections of nitric oxide synthesizing neurons in the guinea-pig colon. Cell Tissue Res 1993;271:545–553.

    CAS  PubMed  Google Scholar 

  25. Aimi Y, Kimura H, Kinoshita T, et al. Histochemical localization of nitric oxide synthase in rat enteric nervous system. Neuroscience 1993;53:553–560.

    Article  CAS  PubMed  Google Scholar 

  26. Nichols K, Staines W, Krantis A. Nitric oxide synthase distribution in the rat intestine: A histochemical analysis. Gastroenterology 1993;105:1651–1661.

    CAS  PubMed  Google Scholar 

  27. Tennyson VM, Pham TD, Rothman TP, et al. Abnormalities of smooth muscle, basal laminae, and nerves in the aganglionic segments of the bowel of lethal spotted mutant mice. Anat Rec 1986;215:267–281.

    Article  CAS  PubMed  Google Scholar 

  28. Payette RF, Tennyson VM, Pham TD, et al. Origin and morphology of nerve fibers in the aganglionic colon of the lethal spotted (Is/Is) mutant mouse. J Comp Neurol 1987;257:237–252.

    Article  CAS  PubMed  Google Scholar 

  29. Parikh DH, Tam PKH, Velzen DV, et al. Abnormalities in the distribution of laminin and collagen type IV in Hirschsprung's disease. Gastroenterology 1992;102:1236–1241.

    CAS  PubMed  Google Scholar 

  30. Hata F, Ishii T, Kanada A, et al. Essential role of nitric oxide in descending inhibition in the rat proximal colon. Biochem Biophys Res Commun 1990;172:1400–1406.

    Article  CAS  PubMed  Google Scholar 

  31. Costa M, Furness JB, Pompolo S, et al. Projections and chemical conding of neurons with immunoreactivity for nitric oxide synthase in the guinea pig small intestine. Neurosci Lett 1992;148:121–125.

    Article  CAS  PubMed  Google Scholar 

  32. Aimi Y, Fujimura M, Vincent SR, et al. Localization of NADPH-diaphorase-containing neurons in sensory ganglia of the rat. J Comp Neurol 1991;306:382–392.

    Article  CAS  PubMed  Google Scholar 

  33. Okamoto E, Ueda T. Embryogenesis of intramural ganglia of the gut and its relation to Hirschsprung's disease. J Pediat Surg 1967;2:437–443.

    Google Scholar 

  34. Satomi H, Yamamoto T, Ise H, et al. Origin of the parasympathetic preganglionic fibers to the cat intestine as demonstrated by the horseradish peroxidase method. Brain Res 1978;151:571–578.

    Article  CAS  PubMed  Google Scholar 

  35. Christensen J, Stiles MJ, Rick GA, et al. Comparative anatomy of the myenteric plexus of the distal colon in eight mammals. Gastroenterology 1984;86:706–713.

    CAS  PubMed  Google Scholar 

  36. Stach W. Uber die in der Dickdarmwand aszendiereden Nerven des Plexus pelvinus und die Grenze der vagalen und sakralparasympathischem Innervation. Z Mikrosk Anat Forsch 1971;84:65–90.

    CAS  PubMed  Google Scholar 

  37. Santer RM, Symons D. Distribution of NADPH-diaphorase activity in rat paravertebral, prevertebral and pelvic sympathetic ganglia. Cell Tissue Res 1993;271:115–121.

    Article  CAS  PubMed  Google Scholar 

  38. Domoto T, Tsumori T. Co-localization of nitric oxide synthase and vasoactive intestinal peptide immunoreactivity in neurons of the major pelvic ganglion projecting to the rat rectum and penis. Cell Tissue Res 1994;278:273–278.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teramoto, M., Domoto, T., Tanigawa, K. et al. Distribution of nitric oxide synthase-containing nerves in the aganglionic intestine of mutant rats: A histochemical study. J Gastroenterol 31, 214–223 (1996). https://doi.org/10.1007/BF02389520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02389520

Key words

Navigation