Skip to main content
Log in

Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina

  • Technical Note
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

It is of the utmost importance to increase the activity of bone cells on the surface of materials used in the design of orthopaedic implants. Increased activity of such cells can promote either integration of these materials into surrounding bone or complete replacement with naturally produced bone if biodegradable materials are used. Osteoblasts are bone-producing cells and, for that reason, are the cells of interest in initial studies of new orthopaedic implants. If these cells are functioning normally, they lay down bone matrix onto both existing bone and prosthetic materials implanted into the body. It is generally accepted that a successful material should enhance osteoblast function, leading to more bone deposition and, consequently, increased strength of the interface between the material and juxtaposed bone. The present study provided the first evidence of greater osteoblast function on carbon and alumina formulations that mimic the nano-dimensional crystal geometry of hydroxyapatite found in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. M., Gristina, A. G., Hanson, S. R., Harker, L. A., Johnson, R. J., Merritt, K., Naylor, P. T., andSchoen, F. J. (1996): ‘Host reactions to biomaterials and their evaluation’, inRatner, B. D., Hoffman, A. S., Shoen, F. J., andLemons, J. E. (Eds): ‘Biomaterials science: an introduction to materials in medicine’ (Academic Press, London, 1996), pp. 165–215

    Google Scholar 

  • Coathup, M. J., Blunn, G. W., Flynn, N., Williams, C., andThomas, N. P. (2001): ‘A comparison of bone remodeling around hydroxyapatite-coated, porous-coated and grit-blasted hip replacements retrieved at post-mortem’,J. Bone & Joint Surg. Brit.,83, pp. 118–123

    Google Scholar 

  • Dee, K. C., Rueger, D. C., Andersen, T. T., andBizios, R. (1996): ‘Conditions which promote mineralization at the bone-implant interface: a modelin vitro study’,Biomaterials,17, pp. 209–215

    Article  Google Scholar 

  • Elias, K. E., Price, R. L., andWebster, T. J. (2001): ‘Enhanced functions of osteoblasts on carbon nanofiber compacts’,Biomaterials

  • Gutwein, L. G., Tepper, F., andWebster, T. J. (2002): ‘Increased osteoblast function on nanofibered alumina’,American Ceramic Society 26th Annual Meeting Conf. Proc.

  • Kaplan, F. S., Hayes, W. C., Keaveny, T. M., Boskey, A., Einhorn, T. A., Iannotti, J. P., andSimon, S. P. (1994): ‘Orthopaedic basic science’ (American Academy of Orthopaedic Surgeons, Columbus, Ohio, 1994), pp. 127–185

    Google Scholar 

  • Kay, S., Thapa, A., Haberstroh, K. M., andWebster, T. J. (2002): ‘Nanostructured polymer: nanophase ceramic composites enhance osteoblast and chondrocyte adhesion’,Tissue Eng.,8, pp. 753–761

    Article  Google Scholar 

  • Ma, P. X., andZhang, R. (1999): ‘Synthetic nano-scale fibrous extracellular matrix’,J. Biomed. Mater. Res.,46, pp. 60–72

    Article  Google Scholar 

  • Miller, D. M., Thapa, A., Haberstroh, K. M., andWebster, T. J. (2002): ‘Anin vitro study of nano-fiber polymers for guided vascular regeneration’, Materials Research Society Symposium Proc.,711, pp. GG3.2.1-GG3.2.4

    Google Scholar 

  • Montgomery, D. C. (Ed) (1991): ‘Design and analysis of experiments’ (John Wiley & Sons, Inc., New York, 1991), pp. 28–30

    Google Scholar 

  • Ogiso, M., Yamashita, Y., andMatsumoto, T. (1998): ‘Differences in microstructural characteristics of dense HA and HA coating’,J. Biomed. Mater. Res.,41, pp. 296–303

    Article  Google Scholar 

  • Park, J. B., andLakes, R. S. (1992): ‘Biomaterials: an introduction’ (Plenum Press, New York, London, 1992)

    Google Scholar 

  • Price, R. L., Elias, K. L., Haberstroh, K. M., andWebster, T. J. (2001): ‘Small diameter, high surface energy carbon nanofiber formulations that selectively increase osteoblast function’, Mater. Res. Soc. Spring 2001 Meeting Conf. Proc.

  • Rodriguez, N. M. (1993): ‘A review of catalytically grown carbon nanofibers’,J. Mater. Res.,8, pp. 3233–3250

    Google Scholar 

  • Tepper, F., Lerner, M., andGinley, D. (2001): ‘Nanosized alumina fibers’,Am. Ceramic Soc. Bull.,80, pp. 57–60

    Google Scholar 

  • Thapa, A., Webster, T. J., andHaberstroh, K. M. (2002): ‘An investigation of nano-structured polymers for use as bladder tissue replacement constructs’,Materials Research Society Symposium Proceedings,711, pp. GG3.4.1-GG3.4.6

    Google Scholar 

  • Webster, T. J. (2001): ‘Nanophase ceramics: the future orthopedic and dental implant material’,Adv. Chem. Eng.,27, pp. 125–166

    Google Scholar 

  • Webster, T. J., Siegel, R. W., andBizios, R. (2001a): ‘Nanoceramic surface roughness enhances osteoblast and osteoclast functions for improved orthopaedic/dental implant efficacy’,Scripta Materialia,44, pp. 1639–1642

    Article  Google Scholar 

  • Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., andBizios, R. (2001b): ‘Enhanced function of osteoblasts on nanophase ceramics’,Biomaterials,21, pp. 1803–1810

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, R.L., Haberstroh, K.M. & Webster, T.J. Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Med. Biol. Eng. Comput. 41, 372–375 (2003). https://doi.org/10.1007/BF02348445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348445

Keywords

Navigation