Skip to main content
Log in

Calculations of the electrostatic free energy contributions to the binding free energy of sulfonamides to carbonic anhydrase

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The interactions between biologically important enzymes and drugs are of great interest. In order to address some aspects of these interactions we have initiated a program to investigate enzymedrug interactions. Specifically, the interactions between one of the isozymes of carbonic anhydrase and a family of drugs known as sulfonamides have been studied using computational methods. In particular the electrostatic free energy of binding of carbonic anhydrase II with acetazolamide, methazolamide,p-chlorobenzenesulfonamide,p-aminobenzenesulfonamide and three new compounds (MK1, MK2, and MK3) has been computed using finite-difference Poisson-Boltzmann (FDPB) [1] method and the semimacroscopic version [2, 3] of the protein dipole Langevin dipole (PDLD) method [4]. Both methods, FDPB and PDLD, give similar results for the electrostatic free energy of binding even though different charges and different treatments were used for the protein. The calculated electrostatic binding free energies are in reasonable agreement with the experimental data. The potential and the limitation of electrostatic models for studies of binding energies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madura, J. D.; Davis, M. E.; Gilson, M. K.; Wade, R. C.; Luty, B. A.; McCammon, J. A. InRev. Comp. Chem. Boyd, D., Lipkowitz, K.; Ed.; VCH: New York, 1994; Vol. 5, p. 229.

    Google Scholar 

  2. Lee, F. S.; Chu, Z.-T.; Bolger, M. B.; Warshel, A.Protein Eng. 1992,5, 215.

    Google Scholar 

  3. Lee, F. S.; Chu, Z.-T.; Warshel, A.J. Comput. Chem. 1993,14, 161.

    Google Scholar 

  4. Warshel, A.Computer Modeling of Chemical Reactions in Enzymes and Solutions; Wiley: New York, 1991.

    Google Scholar 

  5. Kannan, K. K.; Petef, M.; Fridborg, K.; Cid-Dresdner, H., Lovgren, S.FEBS Lett. 1977,73, 115.

    Google Scholar 

  6. Taylor, P. W.; King, R. W.; Burgen, A. S. V.Biochem. 1970.

  7. Eriksson, A. E.; Kylsten, P. M.; Jones, T. A.; Liljas, A.Proteins 1988,4, 283.

    Google Scholar 

  8. Merz, K. M.; Murcko, M. A.; Kollman, P. A.J. Am. Chem. Soc. 1991,113, 4484.

    Google Scholar 

  9. Vedani, A.; Meyer, J. E. F. InMolecular Dynamics and Protein Structure; Hermans, J., Ed.; Polycrystal Book Service: Western Springs, 1984.

    Google Scholar 

  10. Straatsma, T. P.; McCammon, J. A. InAnnu. Rev. Phys. Chem.; Strauss, H. L.; Babcock, G. T.; Leone, S. R.; Ed.; Annual Reviews, Inc.: Palo Alto, 1992; Vol. 43, p 407.

    Google Scholar 

  11. Warshel, A.; Aqvist, J. InAnn. Rev. Biophys. Biophys. Chem. Annual Reviews, Inc.: 1991; Vol. 20; p 267.

    Google Scholar 

  12. Aqvist, J.; Medina, C.; Samuelsson, J.-E.Protein Eng. 1994,7, 385.

    Google Scholar 

  13. Warshel, A.; Tao, H.; Fothergill, M.; Chu, Z.-T.Isr. J. Chem. 1994,54, 253.

    Google Scholar 

  14. Davis, M. E.; McCammon, J. A.Chem. Rev. 1990,90, 509.

    Google Scholar 

  15. Nicholls, A.; Honig, B.J. Comput. Chem. 1991,12, 435.

    Google Scholar 

  16. King, G.; Lee, F. S.; Warshel, A.J. Chem. Phys. 1991,95, 4366.

    Google Scholar 

  17. Chirlian, L. E.; Francl, M. M.J. Comput. Chem. 1987,8, 894.

    Google Scholar 

  18. Quanta 4.0 molecular modeling software from Molecular Simulations, Inc. Burlington, MA, 1994.

  19. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, J. E. F.; Brice, M. D.; Rogers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, J.Mol. Biol. 1977,112, 535.

    Google Scholar 

  20. Gilson, M. K., Sharp, K. A., Honig, B. H.J. Comput. Chem. 1987,9, 327.

    Google Scholar 

  21. Madura, J. D.; Briggs, J. M.; Wade, R. C., Davis, M. E.; Luty, B. A.; Ilin, A.; Antosciewicz, J.; Gilson, M. K.; Bagheri, B.; Scott, L. R.; McCammon, J. A.Comput. Phys. Commun. 1995,91, 57.

    Google Scholar 

  22. Maren, T. H.Mol. Pharm. 1991,41, 419.

    Google Scholar 

  23. American Chemical Society Presidential Satellite Television Seminar: Molecular Modeling in the Discovery of New Drugs: American Chemical Society: Washington, DC, 1993.

    Google Scholar 

  24. Parson, W. W.; Chu, Z.-T.; Warshel, A.Biochim. Biophys. Acta 1990,1017, 251.

    Google Scholar 

  25. Aqvist, J.; Leucke, H.; Quiocho, F. A.; Warshel, A.Proc. Natl. Acad. Sci., USA 1991,88, 2026.

    Google Scholar 

  26. Mohan, V.; Davis, M. E.; McCammon, J. A.; Pettitt, B. M.J. Phys. Chem. 1992,96, 6428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madura, J.D., Nakajima, Y., Hamilton, R.M. et al. Calculations of the electrostatic free energy contributions to the binding free energy of sulfonamides to carbonic anhydrase. Struct Chem 7, 131–138 (1996). https://doi.org/10.1007/BF02278738

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02278738

Keywords

Navigation