Skip to main content
Log in

Hidden and unhidden information in quantum tunneling

  • Published:
Foundations of Physics Letters

Abstract

We discuss the claim that when the peak of a tunneling wave packet appears on the far side of a barrier sooner than would be allowed by causal propagation of the incident peak, this must be interpreted to mean that the transmitted particles originate toward the leading edge of the incident peak. We examine the status of information about where in a wave packet a particle is, both in terms of Bohm's deterministic picture of quantum mechanics and in terms of a recently proposedGedankenexperiment. We find that while there are very real senses in which this interpretation makes sense, attempts to explicitly bring out this extra information in the form of quantum-mechanical observables necessarily fail. It therefore remains “hidden” information, which we can deduce indirectly from multiple experiments or from the principle of causality, but which we can never observe directly in a single experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky and N. Rosen,Phys. Rev. 47, 777 (1935).

    Article  Google Scholar 

  2. J. S. Bell,Physics 1, 195 (1964).

    Google Scholar 

  3. J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978).

    Article  Google Scholar 

  4. A. Aspect, J. Dalibard and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).

    Article  Google Scholar 

  5. Y. Aharonov, P. G. Bergmann and J. L. Lebowitz,Phys. Rev. B 134, 1410 (1964); also reprinted inQuantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983).

    Google Scholar 

  6. Y. Aharonov and L. VaidmanPhys. Rev. A 41, 11 (1990).

    Article  Google Scholar 

  7. L. A. MacColl,Phys. Rev. 40, 621 (1932).

    Article  Google Scholar 

  8. E. P. Wigner,Phys. Rev. 98, 145 (1955).

    Article  Google Scholar 

  9. E. H. Hauge and J. A. Støvneng,Rev. Mod. Phys. 61, 917 (1989).

    Article  Google Scholar 

  10. A. M. Steinberg and R. Y. Chiao, to appear inPhys. Rev. A 49 (5) (1994).

  11. E. H. Hauge, J. P. Falck and T. A. Fjeldly,Phys. Rev. B 36, 4203 (1987).

    Article  Google Scholar 

  12. A. M. Steinberg, P. G. Kwiat and R. Y. Chiao,Phys. Rev. Lett. 71, 708 (1993).

    Article  Google Scholar 

  13. A. Enders and G. Nimtz,J. Phys. I France 3, 1089 (1993).

    Article  Google Scholar 

  14. M. Büttiker and R. Landauer,Phys. Rev. Lett. 49, 1739 (1982).

    Article  Google Scholar 

  15. C. G. B. Garrett and D. E. McCumberPhys. Rev. A 1, 305 (1970).

    Article  Google Scholar 

  16. S. Chu and S. WongPhys. Rev. Lett. 48, 738 (1982).

    Article  Google Scholar 

  17. R. J. Glauber,Phys. Rev. 130, 2529 (1963).

    Article  Google Scholar 

  18. I. H. Deutsch,Am. J. Phys. 59, 834 (1991).

    Article  Google Scholar 

  19. I. H. Deutsch and J. C. Garrison,Phys. Rev. A 43, 2498 (1991).

    Article  Google Scholar 

  20. Y. Aharonov and L. Vaidman,Phys. Lett. A 178, 38 (1993).

    Article  Google Scholar 

  21. Y. Aharonov and J. Anandan,Phys. Rev. A 47, 4616 (1993).

    Article  Google Scholar 

  22. J. M. Deutch and F. E. Low,Ann. Phys. 228, 184 (1993).

    Article  Google Scholar 

  23. M. O. Scully, B.-G. Englert and H. Walther,Nature 351, 111 (1991).

    Article  Google Scholar 

  24. A. G. Zajonc, L. J. Wang, X. Y. Zou and L. Mandel,Nature 353, 507 (1991).

    Article  Google Scholar 

  25. P. G. Kwiat, A. M. Steinberg and R. Y. Chiao,Phys. Rev. A 45, 7729 (1992).

    Article  Google Scholar 

  26. P. G. Kwiat, A. M. Steinberg and R. Y. Chiao,Phys. Rev. A 49, 61 (1994).

    Article  Google Scholar 

  27. W. H. ZurekPhys. Today 44, 36 (1991).

    Google Scholar 

  28. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma,Phys. Rev. Lett. 69, 1293 (1992).

    Article  Google Scholar 

  29. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wooters,Phys. Rev. Lett 70, 1895 (1993).

    Article  Google Scholar 

  30. D. Deutsch and R. Jozsa,Proc. R. Soc. (London) A 439, 553 (1992).

    Google Scholar 

  31. A. C. Elitzur and L. Vaidman,Found. Phys. 23, 987 (1993).

    Article  Google Scholar 

  32. W. H. Zurek,Complexity, Entropy and the Physics of Information (Addison-Wesley, Redwood City, California, 1990).

    Google Scholar 

  33. C. M. Caves,Phys. Rev. E 47, 4010 (1993).

    Article  Google Scholar 

  34. L. Brillouin,Wave Propagation and Group Velocity (Academic, New York, 1960).

    Google Scholar 

  35. P. H. Eberhard and R. R. Ross,Found. Phys. Lett. 2, 127 (1989).

    Article  Google Scholar 

  36. J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  37. D. Bohm,Phys. Rev. 85, 166 (1952).

    Article  Google Scholar 

  38. D. Bohm and B. J. Hiley,The Undivided Universe: An Ontological Interpretation of Quantum Mechanics (Routledge, London, 1993).

    Google Scholar 

  39. P. R. Holland,The Quantum Theory of Motion (Cambridge Uni]versity Press, Cambridge, 1993).

    Google Scholar 

  40. C. Dewdney and B. J. Hiley,Found. Phys. 12, 27 (1982).

    Article  Google Scholar 

  41. C. R. Leavens,Sol. St. Comm. 74, 923 (1990).

    Article  Google Scholar 

  42. C. R. Leavens,Sol. St. Comm. 76, 253 (1990).

    Article  Google Scholar 

  43. C. R. Leavens and G. C. Aers, inScanning Tunneling Microscopy III, R. Wiesendanger and H.-J. Güntherodt, eds. (Springer, Berlin, 1993), p. 105.

    Google Scholar 

  44. B.-G. Englert, M. O. Scully, G. Süssmann, and H. Walther,Z. Naturforsch. 47a, 1175 (1992).

    Google Scholar 

  45. C. Dewdney, L. Hardy and E. J. Squires,Phys. Lett. A 184, 6 (1993).

    Article  Google Scholar 

  46. D. Bohm and B. J. Hiley,Found. Phys. 21, 243 (1991).

    Article  MathSciNet  Google Scholar 

  47. P. R. Holland,phys. Rep. 224, 95 (1993).

    Article  Google Scholar 

  48. M. Büttiker,phys. Rev. B 27, 6178 (1983).

    Article  Google Scholar 

  49. T. Martin and R. Landauer,phys. Rev. A 47, 2023 (1993).

    Article  Google Scholar 

  50. A. M. Steinberg, P. G. Kwiat and R. Y. Chiao, inPerapectives in Neutrinos, Atomic Phyaics and Gravitation, XXVIIIe Rencontre de Moriond, J. Trân Thanh Vân et al., eds. (Editions Frontières, Gif-sur-Yvette, France, 1993).

    Google Scholar 

  51. R. Y. Chiao,phys. Rev. A 48, R34 (1993).

    Article  Google Scholar 

  52. A. M. Steinberg and R. Y. Chiao,phys. Rev. A 49 (3) (1994), to appear.

  53. H. A. Fertig,phys. Rev. Lett. 65, 2321 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the U.S. Office of Naval Research under grant N00014-90-J-1259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, A.M., Kwiat, P.G. & Chiao, R.Y. Hidden and unhidden information in quantum tunneling. Found Phys Lett 7, 223–239 (1994). https://doi.org/10.1007/BF02275251

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02275251

Key words

Navigation