Skip to main content
Log in

Variations in hepatic metallothionen, zinc and copper levels during an annual reproductive cycle in rainbow trout,Salmo gairdneri

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The normal variations in hepatic levels of metallothionein, zinc and copper were studied during an annual reproductive cycle in rainbow trout of both sexes. In female fish, the total hepatic zinc levels closely followed the estradiol-17β and the LSI levels. Hence, the zinc levels rose in September, peaked in December and dropped in January. No distinct peaks were, however, observed in the whole-liver copper content. The hepatic metallothionein levels in female fish began to increase at the onset of exogenous vitellogenesis. Maximum levels were reached after estradiol-17β and LSI levels had dropped in January. In male fish no distinct peaks in either zinc or copper levels were observed. The metallothionein levels increased somewhat during the time of spermatogenesis. It is suggested that metallothionein may regulate the hepatic zinc distribution during the annual reproductive cycle in female rainbow trout, thereby ensuring the organism of a control mechanism to keep the pool of available zinc at an appropriate level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Andersen, R.D., Piletz, J.E., Birren, B.W. and Herschman, H.R. 1983. Levels of metallothionein messenger RNA in foetal, neonatal and maternal rat liver. Eur. J. Biochem. 131: 497–500.

    Google Scholar 

  • Andrews, G.K., Adamson, E.D. and Gedamu, L. 1984. The ontogeny of expression of murine metallothionein: Comparison with the α-fetoprotein gene. Dev. Biol. 103: 294–303.

    Google Scholar 

  • Baynes, S.M. and Scott, A.P. 1985. Seasonal variations in parameters of milt production and plasma concentration of sex steroids of male rainbow trout (Salmo gairdneri). Gen. Comp. Endocrinol. 57: 150–160.

    Google Scholar 

  • Bell, J.U. 1979. Native metallothionen levels in rat hepatic cytosol during perinatal development. Tox. Appl. Pharmacol. 50: 101–107.

    Google Scholar 

  • Bohemen, Ch.G. van, Lambert, J.G.D. and Peute, J. 1981. Annual changes in plasma and liver in relation to vitellogenesis in the female rainbow trout,Salmo gairdneri. Gen. Comp. Endocrinol. 44: 94–107.

    Google Scholar 

  • Brady, O.B., Webb, M. and Mason, R. 1982. Zinc and copper metabolism in neonates: Role of metallothionein in growth and development in rat. pp 77–97.In Biological roles of metallothionein. Edited by E.C. Foulkes. Elsevier/North-Holland.

  • Brdicka, R. 1933. Polarographic studies with the dropping mercury cathode. Part XXXI—A new test for proteins in the presence of cobalt salts in ammoniacal solutions of ammonium chloride. Collect. Czech. Chem. Commun. 5: 112–128.

    Google Scholar 

  • Charles-Shannon, V.L., Sasser, L.B., Burbank, D.K. and Kelman, B.J. 1981. The influence of zinc on the ontogeny of hepatic metallothionein in the fetal rat. Proc. Soc. Exp. Biol. Med. 168: 56–61.

    Google Scholar 

  • Cousins, R.J. 1983. Metallothionein, aspects related to copper and zinc metabolism. J. Inher. Metab. Dis. 6: 15–21.

    Google Scholar 

  • DeVlaming, V.L., Shing, J., Paquette, G. and Vuchs, R. 1977.In vivo andin vitro effects of oestradiol-17β on lipid metabolism inNotemigonus crysoleucas. J. Fish Biol. 10: 273–285.

    Google Scholar 

  • DiSilvestro, R.A. and Cousins, R.J. 1984. Mediation of endotoxin-induced changes in zinc metabolism in rats. Am. J. Physiol. 247: E436–E441.

    Google Scholar 

  • Durnam, D.M. and Palmiter, R.D. 1981. Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J. Biol. Chem. 256: 5712–5716.

    Google Scholar 

  • Durnam, D.M., Hoffman, J.S., Quaife, C.J., Benditt, E.P., Chen, H.Y., Brinster, R.L. and Palmiter, R.P. 1984. Induction of mouse metallothionein-1 mRNA by bacterial endotoxin is independent of metals and glucocorticoid hormones. Proc. Nat. Acad. Sci. USA. 81: 1053–1056.

    Google Scholar 

  • Friedman, R.L., Manly, S.P., McMahon, M., Kerr, I.M. and Stark, G.R. 1984. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38: 745–755.

    Google Scholar 

  • Förlin, L., Haux, C., Anderson, T., Olsson P.-E. and Larsson, A. 1986. Physiological methods in fish toxicology: Laboratory and field studies.In Fish physiology: Recent advances. Edited by S. Nilsson and S. Holmgren. Croom Helm Ltd. U.K. (In press).

    Google Scholar 

  • Haux, C. and Norberg, B. 1984. Biochemical changes during the annual reproductive cycle in female rainbow trout,Salmo gairdneri. Gen. Comp. Endocr. 53: 451–452.

    Google Scholar 

  • Haux, C. and Norberg, B. 1985. The influence of estradiol-17β on the liver content of protein, lipids, glycogen and nucleic acids in juvenile rainbow trout,Salmo gairdneri. Comp. Biochem. Physiol. 81B: 275–279.

    Google Scholar 

  • Holcombe, G.W., Benoit, D.A. and Leonard, E.N. 1979. Long-term effects of zinc exposure on brook trout (Salvelinus fontinalis). Trans. Am. Fish. Soc. 108: 76–87.

    Google Scholar 

  • Karin, M., Andersen, R.D., Slater, E., Smith, K. and Herschman, H.R. 1980. Metallothionein mRNA induction in HeLa cells in response to zinc or dexamethasone is a primary induction response. Nature, Lond. 286: 295–297.

    Google Scholar 

  • Karin, M. 1985. Metallothioneins: Proteins in search of function. Cell 41: 9–10.

    Google Scholar 

  • Kern, S.R., Smith, H.A., Fontaine, D. and Bryan, S.E. 1981. Partitioning of zinc and copper in fetal liver subfractions: Appearance of metallothionein-like proteins during development. Tox. Appl. Pharmacol. 59: 346–354.

    Google Scholar 

  • Kirchgessner, M., Roth, H.-P., Spoerl, R., Kellner, R.J. and Weigand, E. 1977. A comparative view on trace elements and growth. Nutr. Metab. 21: 119–143.

    Google Scholar 

  • Ley, H.L., Failla, M.L. and Cherry, D.S. 1983. Isolation and characterization of hepatic metallothionein from rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 74B: 507–513.

    Google Scholar 

  • Og, S.H., Deagen, J.T., Whanger, P.D. and Weswig, P.H. 1978. Biological function of metallothionein. V. Its induction in rats by various stresses. Am. J. Physiol. 234: E282–E285.

    Google Scholar 

  • Olafson, R.W. and Sim, R.G. 1979. An electrochemical approach to quantitation and characterization of metallothioneins. Anal. Biochem. 100: 343–351.

    Google Scholar 

  • Olafson, R.W. 1985. Thymus metallothionein: Regulation of zinc-thionein in the aging mouse. Can. J. Biochem. Cell Biol. 63: 91–95.

    Google Scholar 

  • Olsson, P.-E. and Haux, C. 1985a. Rainbow trout metallothionein. Inorg. Chim. Acta. 107: 67–71.

    Google Scholar 

  • Olsson, P.-E. and Haux, C. 1985b. Alterations in hepatic metallothionein content in perch,Perca fluviatilis, environmentally exposed to cadmium. Mar. Envir. Res. 17: 181–183.

    Google Scholar 

  • Oulette, A.J. 1982. Metallothionein mRNA expression in fetal mouse organs. Dev. Biol. 92: 240–246.

    Google Scholar 

  • Panemangalore, M., Banerjee, D., Onosaka, S. and Cherian, M.G. 1983. Changes in the intracellular accumulation and distribution of metallothionein in rat liver and kidney during postnatal development. Dev. Biol. 97: 95–102.

    Google Scholar 

  • Pierson, K.B. 1981. Effects of chronic zinc exposure on the growth, sexual maturity, reproduction and bioaccumulation of the guppy,Poecilia reticulata. Can. J. Fish. Aquat. Sci. 38: 23–31.

    Google Scholar 

  • Piletz, J.E., Andersen, R.D., Birren, B.W. and Herschman, H.R. 1983. Metallothionein synthesis in foetal, neonatal and maternal rat liver. Eur. J. Biochem. 131: 489–495.

    Google Scholar 

  • Roch, M., McCarter, A., Matheson, M.C. and Olafson, R. 1982. Hepatic metallothionein in rainbow trout (Salmo gairdneri) as an indicator of metal pollution in the Campbell river system. Can. J. Fish Aquat. Sci. 39: 1596–1601.

    Google Scholar 

  • Roch, M. and McCarter, A. 1984. Hepatic metallothionein production and resistance to heavy metals by rainbow trout. II. Held in a series of contaminated lakes. Comp. Biochem. Physiol. 74C: 77–82.

    Google Scholar 

  • Sandstead, H.H. 1975. Some trace elements which are essential for human nutrition: Zinc, copper, manganese and chromium. Prog. Food. Nutr. Sci. 1: 371–391.

    Google Scholar 

  • Scheffe, H. 1959. The analysis of variance. John Wiley and Sons. N.Y.

    Google Scholar 

  • Scott, A.P., Sheldrick, E.L. and Flint, A.P. 1982. Measurements of 17α,20β-dihydroxy-4-pregnen-3-one in plasma of trout (Salmo gairdneri): Seasonal changes and response to salmon pituitary extract. Gen. Comp. Endocrinol. 46: 444–451.

    Google Scholar 

  • Scott, A.P. and Sumpter, J.P. 1983. A comparison of the female reproductive cycles of autumn-spawning and winter-spawning strains of rainbow trout (Salmo gairdneri Richardson). Gen. Comp. Endocrinol. 52: 79–85.

    Google Scholar 

  • Sobocinski, P.Z., Canterbury, W.J., Mapes, C.A. and Dinterman, R.E. 1978. Involvement of hepatic metallothionein in hypozincemia associated with bacterial infection. Am. J. Physiol. 234: E399–E406.

    Google Scholar 

  • Taylor, M.C., Demayo, A. and Taylor, K.W. 1982. Effects of zinc on humans, laboratory and farm animals, terrestrial plants and freshwater aquatic life. pp. 113–181.In: CRC Critical Reviews in Environmental Control. Edited by Straub, C.P. CRC Press, Florida.

    Google Scholar 

  • Thompson, J.A.J. and Cosson, R.P. 1984. An improved electrochemical method for the quantification of metallothionein in marine organisms. Mar. Envir. Res. 11: 137–152.

    Google Scholar 

  • Wallace, R.A. 1978. Oocyte growth in nonmammalian vertebrates.In: The vertebrate ovary, pp. 469–502. Edited by R.E. Jones. Plenum Press, New York.

    Google Scholar 

  • Vojnik, C. and Hurley, L.S. 1977. Abnormal prenatal lung development resulting from maternal zinc deficiency in rats. J. Nutr. 107: 862–872.

    Google Scholar 

  • Yangle, M.K. and Palmiter, R.D. 1985. Coordinate regulation of mouse metallothionein. I and 11 genes by heavy metals and glucocorticoids. Mol. Cell. Biol. 5: 291–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, PE., Haux, C. & Förlin, L. Variations in hepatic metallothionen, zinc and copper levels during an annual reproductive cycle in rainbow trout,Salmo gairdneri . Fish Physiol Biochem 3, 39–47 (1987). https://doi.org/10.1007/BF02183992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183992

Keywords

Navigation