Skip to main content
Log in

Heterologous expression systems for P-glycoprotein:E. coli, yeast, and baculovirus

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Chemotherapy, though it remains one of the front-line weapons used to treat human cancer, is often ineffective due to drug resistance mechanisms manifest in tumor cells. One common pattern of drug resistance, characterized by simultaneous resistance to multiple amphipathic, but otherwise structurally dissimilar anticancer drugs, is termed multidrug resistance. Multidrug resistance in various model systems, covering the phylogenetic range from bacteria to man, can be conferred by mammalian P-glycoproteins (PGPs), often termed multidrug transporters. PGPs are 170-kD polytopic membrane proteins, predicted to consist of two homologous halves, each with six membrane spanning regions and one ATP binding site. They are members of the ATP-binding cassette (ABC) superfamily of transporters, and are known to function biochemically as energy-dependent drug efflux pumps. However, much remains to be learned about PGP structure-function relationships, membrane topology, posttranslational regulation, and bioenergetics of drug transport. Much of the recent progress in the study of the human and mouse PGPs has come from heterologous expression systems which offer the benefits of ease of genetic selection and manipulation, and/or short generation times of the organism in which PGPs are expressed, and/or high-level expression of recombinant PGP. Here we review recent studies of PGP inE. coli, baculovirus, and yeast systems and evaluate their utility for the study of PGPs, as well as other higher eukaryotic membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S., Safa, A. R., and Glazer, R.I. (1994).Biochemistry 33, 10313–10318.

    PubMed  Google Scholar 

  • Alnemri, E. S., Fernandes-Alnemri, T., Nelki, D. S., Dudley, K., Dubois, G. C., and Litwack, G. (1993).Proc. Natl. Acad. Sci. USA 90, 6839–6843.

    PubMed  Google Scholar 

  • Al-Shawi, M. K., and Senior, A. E. (1993).J. Biol. Chem 268, 4197–4206.

    PubMed  Google Scholar 

  • Ambudkar, S. V., Lelong, I. H., Zhang, J., Cardarelli, C. O., Gottesman, M. M., and Pastan, I. (1992).Proc. Natl. Acad. Sci. USA 89, 8472–8476.

    PubMed  Google Scholar 

  • Balzi, E., and Goffeau, A. (1991).Biochim. Biophys. Acta 1073, 241–252.

    PubMed  Google Scholar 

  • Baubichon-Cortay, H., Baggetto, L. G., Dayan, G., and Di Pietro, A. (1994).J. Biol. Chem. 269, 22983–22989.

    Google Scholar 

  • Barnes, H. J., Arlotto, M. P., and Waterman, M. R. (1991).Proc. Natl. Acad. Sci. USA 88, 5597–5601.

    PubMed  Google Scholar 

  • Bear, C. E., Li, C., Kartner, N., Bridges, R. J., Jensen, T. J., Ramjeesingh, M., and Riordan, J. R. (1992).Cell 68, 809–818.

    PubMed  Google Scholar 

  • Bibi, E., and Béjá, O. (1994).J. Biol. Chem. 269, 19910–19915.

    Google Scholar 

  • Bibi, E., Gros, P., and Kaback, H. R. (1993).Proc. Natl. Acad. Sci. USA 90, 9209–9213.

    PubMed  Google Scholar 

  • Bruggemann, E. P., Germann, U. A., Gottesman, M. M., and Pastan, I. (1989).J. Biol. Chem. 264. 15483–15488.

    Google Scholar 

  • Bruggemann, E. P., Chaudhary, V., Gottesman, M. M., and Pastan, I. (1991).Biotechniques 10, 202–209.

    PubMed  Google Scholar 

  • Bruggemann, E. P., Currier, S. J., Gottesman, M. M., and Pastan, I. (1992).J. Biol. Chem. 267, 21020–21026.

    Google Scholar 

  • Chen, C.-J., Chin, C. E., Ueda, K., Clark, D. P., Pastan, I., Gottesmann, M. M., and Roninson, I. B. (1986).Cell 47, 381–389.

    PubMed  Google Scholar 

  • Choi, K., Chen, C.-J., Kriegler, M., and Roninson, I. B. (1988).Cell 53, 519–529.

    PubMed  Google Scholar 

  • Currier, S. J., Kane, S. E., Willingham, M. C., Cardarelli, C. O., Pastan, I., and Gottesman, M. M. (1992).J. Biol. Chem. 267, 25153–25159.

    Google Scholar 

  • Currier, S. J., Ueda, K., Willingham, M. C., Pastan, I., and Gottesman, M. M. (1989).J. Biol. Chem. 264, 14376–14381.

    Google Scholar 

  • Devine, S. E., Ling, V., and Melera, P. W. (1992).Proc. Natl. Acad. Sci. USA 89, 4564–4568.

    PubMed  Google Scholar 

  • Ferreira, G. C., and Pedersen, P. L. (1992).J. Biol. Chem. 267, 5460–5466.

    Google Scholar 

  • Fiermonte, G., Walker, J. E., and Palmieri, F. (1993).Biochem. J. 294, 293–299.

    PubMed  Google Scholar 

  • Germann, U. A., Willingham, M. C., Pastan, I., and Gottesman, M. M. (1990).Biochemistry 29, 2295–2303.

    PubMed  Google Scholar 

  • Germann, U. A., Pastan, I., and Gottesman, M. M. (1993).Sem. Cell Biol. 4, 63–76.

    Google Scholar 

  • Gill, D. R., Hyde, S. C., Higgins, C. F., Valverde, M. A., Mintenig, G. M., and SepÚlveda, F. V. (1992).Cell 71, 23–32.

    PubMed  Google Scholar 

  • Gottesmann, M. M., and Pastan, I. (1988).J. Biol. Chem. 263, 12163–12166.

    Google Scholar 

  • Gottesman, M. M., and Pastan, I. (1993)Annu. Rev. Biochem. 62, 385–427.

    PubMed  Google Scholar 

  • Greenberger, L. (1993).J. Biol. Chem. 268, 11417–11425.

    Google Scholar 

  • Gros, P., Croop, J., and Housman, D. (1986).Cell 47, 371–380.

    PubMed  Google Scholar 

  • Gros, P., Dhir, R., Croop, J., and Talbot, F. (1991).Proc. Natl. Acad. Sci. USA 88, 7289–7293.

    PubMed  Google Scholar 

  • Gros, P., Talbot, F., Tang-Wei, D., Bibi, E., and Kaback, H. R. (1992).Biochemistry 31, 1992–1998.

    PubMed  Google Scholar 

  • Higgins, C. F. (1992).Annu. Rev. Cell Biol. 8, 67–113.

    PubMed  Google Scholar 

  • Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R.A., Nordheim, A., and Stunnenberg, H.G. (1991).Proc. Natl. Acad. Sci USA 88, 8972–8976.

    PubMed  Google Scholar 

  • Juliano, R. L., and Ling, V. (1976).Biochim. Biophys. Acta 455, 152–162.

    PubMed  Google Scholar 

  • Kartner, N., Hanrahan, J. W., Jensen, T. J., Naismith, L., Sun, S., Ackerley, C. A., Reyes, E. F., Tsui, L.-C., Rommens, J. M., Bear, C. E., and Riordan, J. R. (1991).Cell 64, 681–691.

    PubMed  Google Scholar 

  • Kitts, P. A., and Possee, R. D. (1993).Biotechniques 14, 810–817.

    PubMed  Google Scholar 

  • Kuchler, K., and Thorner, J. (1992).Proc. Natl. Acad. Sci. USA 89, 2302–2306.

    PubMed  Google Scholar 

  • Kuchler, K., Goransson, H. M., Viswanathan, M. N., and Thorner, J. (1992).Cold Spring Harbor Symp. Quant. Biol. 57, 579–592.

    PubMed  Google Scholar 

  • Li, C., Ramjeesingh, M., Reyes, E., Jensen, T., Chang, X., Rommens, J. M., and Bear, C. E. (1993).Nature Genetics 3, 311–316.

    PubMed  Google Scholar 

  • Loo, T. W., and Clarke, D. M. (1993a).J. Biol. Chem. 268, 3143–3149.

    Google Scholar 

  • Loo, T. W., and Clarke, D. M. (1993b).J. Biol. Chem. 268, 19965–19972.

    Google Scholar 

  • Loo, T. W., and Clarke, D. M. (1994a).J. Biol. Chem. 269, 7243–7248.

    Google Scholar 

  • Loo, T. W., and Clarke, D. M. (1994b).J. Biol. Chem. 269, 7750–7755.

    Google Scholar 

  • Morris, D. I., Greenberger, L. M., Bruggemann, E. P., Cardarelli, C., Gottesman, M. M., Pastan, I., and Seamon, K. (1994).Mol. Pharmacol. 46, 329–337.

    PubMed  Google Scholar 

  • Nakamoto, R. K., Rao, R., and Slayman, C. W. (1991)J. Biol. Chem. 266, 7940–7949.

    Google Scholar 

  • Rao, U. S., and Scarborough, G. A. (1994).Mol. Pharmacol. 45, 773–776.

    PubMed  Google Scholar 

  • Rao, U. S., Fine, R. L., and Scarborough, G. A. (1994a).Biochem. Pharmacol. 48, 287–292.

    PubMed  Google Scholar 

  • Rao, V. V., Chiu, M. L., Kronauge, J. F., and Piwnica-Worms, D. (1994b).J. Nucl. Med. 35, 500–515.

    Google Scholar 

  • Raymond, M., Gros, P., Whiteway, M., and Thomas, D. Y. (1992).Science 256, 232–233.

    PubMed  Google Scholar 

  • Raymond, M., Ruetz, S., Thomas, D. Y., and Gros, P. (1994).Mol. Cell. Biol. 14, 277–286.

    PubMed  Google Scholar 

  • Reddy, P., Peterkofsky, A., and McKenney, K. (1989).Nucleic Acids Res. 17, 10473–10488.

    PubMed  Google Scholar 

  • Richert, N. D., Aldwin, L., Nitecki, D., Gottesman, M. M., and Pastan, I. (1988).Biochemistry 27, 7607–7613.

    PubMed  Google Scholar 

  • Ruetz, S., and Gros, P. (1994a).J. Biol. Chem. 269, 12277–12284.

    Google Scholar 

  • Ruetz, S., and Gros, P. (1994b).Cell 77, 1071–1081.

    PubMed  Google Scholar 

  • Ruetz, S., Raymond, M., and Gros, P. (1993).Proc. Natl. Acad. Sci. USA 90, 11588–11592.

    PubMed  Google Scholar 

  • Saeki, T., Shimabuku, A. M., Azuma, Y., Shibano, Y., Komano, T., and Ueda, K. (1991).Agric. Biol. Chem. 55, 1859–1865.

    Google Scholar 

  • Saeki, T., Ueda, K., Tanigawara, Y., Hori, R., and Komano, T. (1993).J. Biol. Chem. 268, 6077–6080.

    Google Scholar 

  • Sarkadi, B., Price, E. M., Boucher, R. C., Germann, U. A., and Scarborough, G. (1992).J. Biol. Chem. 267, 4854–4858.

    Google Scholar 

  • Sarkadi, B., Muller, M., Homolya, L., Hollo, Z., Seprodi, J., Germann, U. A., Gottesman, M. M., Price, E. M., and Boucher, R. C. (1994).FASEB J. 8, 766–770.

    PubMed  Google Scholar 

  • Sarkar, H. K., Thorens, B., Lodish, H. F., and Kaback, H. R. (1988).Proc. Natl. Acad. Sci. USA 85, 5463–5467.

    PubMed  Google Scholar 

  • Schinkel, A. H., Kemp, S., Dolle, M., Rudenko, G., and Wagenaar, Els (1993).J. Biol. Chem. 268, 7474–7481.

    Google Scholar 

  • Skach, W. R., and Lingappa, V. R. (1994).Cancer Res. 54, 3202–3209.

    PubMed  Google Scholar 

  • Strosberg, A.D. (1992).Mol. Neurobiol. 4, 211–250.

    Google Scholar 

  • Tanaka, S., Currier, S. J., Bruggemann, E. P., Ueda, K., Germann, U. A., Pastan, I., and Gottesman, M. M. (1990).Biochem. Biophys. Res. Commun. 166, 180–186.

    PubMed  Google Scholar 

  • Yoshimura, A., Kuwazura, Y., Sumizawa, T., Ichikawa, M., Ikeda, S., Ueda, T., and Akiyama, S.-I. (1989).J. Biol. Chem. 264, 16282–16291.

    Google Scholar 

  • Valverde, M. A., Diáz, M., SepÚlveda, F. V., Gill, D. R., Hyde, S. C., and Higgins, C. F. (1992).Nature (London) 355, 830–833.

    Google Scholar 

  • Zhang, L., Sachs, C. W., Fine, R. L., and Casey, P. (1994).J. Biol. Chem. 269, 15973–15976.

    Google Scholar 

  • Zhang, J.-T, Duthie, M., and Ling, V. (1993).J. Biol. Chem. 268, 15101–15110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, G.L., Ni, B., Hrycyna, C.A. et al. Heterologous expression systems for P-glycoprotein:E. coli, yeast, and baculovirus. J Bioenerg Biomembr 27, 43–52 (1995). https://doi.org/10.1007/BF02110330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110330

Key words

Navigation