Skip to main content
Log in

On the abiotic formation of amino acids I. HCN as a precursor of amino acids detected in extracts of lunar samples II. Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson PH (1966) Chemical events on the primitive earth. Proc Natl Acad Sci USA 55: 1365–1375. See also: Abelson PH (1965–1966) Paleobiochemistry: inorganic synthesis of amino acids. Carnegie Inst Wash Yearbook 55: 171–174

    Google Scholar 

  • Andrawes FF, Gibson EK Jr (1979) Inorganic gases and volatile element abundances and distributions in extraterrestrial and terrestrial materials. Am Mineral 64: 453–463

    Google Scholar 

  • Biemann K (1972) In situ synthesis during organic analysis of lunar samples. Space Life Sci 3: 469–473

    PubMed  Google Scholar 

  • Chang S, Smith JW, Kaplan I, Lawless J, Kvenvolden KA, Ponnamperuma C (1970) Carbon compounds in lunar fines from Mare Tranquillitatis—IV. Evidence for oxides and carbides. Proc Apollo 11 Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 1, 2: 1857–1869

    Google Scholar 

  • Cheronis ND, Entrikin JB (1957) Semimicro qualitative organic analysis. The systematic identification of organic compounds. Interscience Publishers, New York and London, pp 229–230, 389

    Google Scholar 

  • Ferris JP, Edelson EH, Auyeung JM, Joshi PC (1981) Structural studies in HCN oligomers. J Mol Evol 17: 69–77

    PubMed  Google Scholar 

  • Flory DA, Wikstrom S, Gupta S, Gibert JM, Oró J (1972) Analysis of organogenic compounds in Apollo 11, 12 and 14 lunar samples. Proc 3rd Lunar Science Conf, Geochim Cosmochim Acta, Suppl 3, 2: 2091–2108

    Google Scholar 

  • Fox SW, Harada K, Hare PE (1972) Amino acid precursors in lunar samples. Space Life Sci 3: 425–431

    PubMed  Google Scholar 

  • Gehrke CW, Zumwalt RW, Kuo K, Rash JJ, Aue WA, Stalling DL, Kvenvolden KA, Ponnamperuma C (1972) Research for amino acids in lunar samples. Space Life Sci 3: 439–449

    PubMed  Google Scholar 

  • Gibson EK Jr, Johnson SM (1971) Thermal analysis-organic gas release studies of lunar samples. Proc 2nd Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 2, 2: 1351–1366

    Google Scholar 

  • Gibson EK Jr, Moore CB (1972) Compounds of the organogenic elements in Apollo 11 and 12 lunar samples: a review. Space Life Sci 3: 404–414

    PubMed  Google Scholar 

  • Gibson EK Jr, Moore GW (1973) Volatile-rich lunar soils: evidence of possible cometary impact. Science 179: 69–71

    Google Scholar 

  • Harada K, Hare PE (1980) Analyses of amino acids from the Allende meteorite. In: Hare PE, Hoering T, King K Jr (eds) Biogeochemistry of amino acids. John Wiley & Sons, New York, pp 169–181

    Google Scholar 

  • Heyns VK, Walter W, Meyer E (1957) Modelluntersuchungen zur Bildung organischer Verbindungen in Atmospharen einfacher Gase durch elektrische Entladungen. Naturwissenschaften 44: 385–389

    Google Scholar 

  • Holland PT, Simoneit BR, Wszolek PC, Burlingame AL (1972) Compounds of carbon and other volatile elements in Apollo 14 and 15 samples. Proc 3rd Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 3, 2: 2131–2147

    Google Scholar 

  • Hosika Y, Takata Y (1976) Gas chromatographic separation of carbonyl compounds as their 2,4-dinitrophenylhydrazones using glass capillary columns. J Chromatogr 120: 279–389

    Google Scholar 

  • Kolthoff IM, Sandell EB (1952) Textbook of quantitative inorganic analysis, 3rd edn. Macmillan, New York, pp 458–460

    Google Scholar 

  • Kvenvolden KA (1972) Review of methods used in lunar organic analysis: extraction and hydrolysis techniques. Space Life Sci 3: 330–341

    PubMed  Google Scholar 

  • Labadie M, Jensen R, Neuzil E (1968) Recherches sur l'evolution prebiologic III. Les acides azulmiques noir formés à partir du cyanure d'ammonium. Biochim Cosmochim Acta 163: 525–533

    Google Scholar 

  • Middleditch BS, Missler SR, Hines HB (1981) Mass spectrometry of priority pollutants. Plenum Press, New York, pp 11–12

    Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive earth conditions. J Am Chem Soc 77: 2351–2361

    Google Scholar 

  • Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23: 480–489

    PubMed  Google Scholar 

  • Miller SL, Van Trump JE (1981) The Strecker synthesis in the primitive ocean. In: Yolman Y (ed) Origin of Life. D. Reidel, Dordrecht, Holland, pp 135–141

    Google Scholar 

  • Moser RE, Claggett AR, Matthews CN (1968a) Peptide formation from aminomalononitrile (HCN trimer). Tetrahedron Lett 13: 1605–1608

    PubMed  Google Scholar 

  • Moser RE, Claggett AR, Matthews CN (1968b) Peptide formation from diaminomaleonitrile (HCN tetramer). Tetrahedron Lett 13: 1559–1603

    Google Scholar 

  • Neidig BA, Hess WC (1952) Simultaneous estimation of threonine and serine. Anal Chem 24: 1627–1628

    Google Scholar 

  • Oró J (1963a) Studies in experimental organic cosmochemistry. Ann NY Acad Sci 108: 464–481

    PubMed  Google Scholar 

  • Oró J (1963b) Synthesis of organic compounds by electric discharges. Nature 198: 862–867

    Google Scholar 

  • Oró J, Kamat SS (1961) Amino acid synthesis from hydrogen cyanide under possible primitive earth conditions. Nature 190: 442–443

    PubMed  Google Scholar 

  • Oró J, Updegrove WS, Gibert J, McReynolds J, Gil-Av E, Ibanez J, Zlatkis A, Flory DA, Levy RL, Wolf CJ (1970) Organogenic elements and compounds in type C and D lunar samples from Apollo 11. Proc Apollo 11 Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 1, 2: 1901–1920

    Google Scholar 

  • Oró J, Flory DA, Gibert JM, McReynolds J, Lichtenstein HA, Wikstrom S (1971a) Abundances and distribution of organogenic elements and compounds in Apollo 12 lunar samples. Proc 2nd Lunar Sci Conf, Geochim Cosmochim Acta, Suppl 2, 2: 1913–1925

    Google Scholar 

  • Oró J, Gibert JM, Lichtenstein H, Wikstrom S, Flory DA (1971b) Amino acids, aliphatic and aromatic hydrocarbons in the Murchison meteorite. Nature 230: 105–106

    PubMed  Google Scholar 

  • Ponnamperuma C, Woeller F (1967) α-Aminonitriles formed by an electric discharge through a mixture of anhydrous methane and ammonia. Curr Mod Biol 1: 156–158

    PubMed  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1967) Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol 30: 223–253

    PubMed  Google Scholar 

  • Schlesinger G, Miller SL (1983a) Prebiotic syntheses in atmospheres containing CH4, CO and CO2: I. Amino acids. J Mol Evol 19: 376–382

    PubMed  Google Scholar 

  • Schlesinger G, Miller SL (1983b) Prebiotic synthesis in atmospheres containing CH4, CO and CO2: II. Hydrogen cyanide, formaldehyde and ammonia. J Mol Evol 19: 383–390

    PubMed  Google Scholar 

  • Schwartz AW, Goverde M (1982) Acceleration of HCN oligomerization by formaldehyde and related compounds: implications for prebiotic synthesis. J Mol Evol 18: 351–353

    PubMed  Google Scholar 

  • Yuasa S, Oró J (1974) Role of weak bases in the prebiotic formation of heterocyclic compounds. In: Oró J, Miller SL, Ponnamperuma C, Young RS (eds) Cosmochemical evolution and the origins of life, Vol. 2. D. Reidel, Dordrecht, Holland, pp 295–299

    Google Scholar 

  • Yuasa S, Oró J (1981) HCN as a possible precursor of the amino acids in lunar samples. In: Kageyama M, Nakamura K, Oshina T, Uchida T (eds) Science and scientists. Japan Scientific Societies Press, Tokyo, pp 31–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuasa, S., Flory, D., Basile, B. et al. On the abiotic formation of amino acids I. HCN as a precursor of amino acids detected in extracts of lunar samples II. Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples. J Mol Evol 20, 52–58 (1984). https://doi.org/10.1007/BF02101985

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101985

Key words

Navigation