Skip to main content
Log in

Quantum mechanics of gravitational collapse

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A toy model of gravitational collapse in General Relativity is studied. It consists of a spherically symmetric thin shell of dust with a fixed rest mass. The configuration space is the half-axis and the Hamiltonian splits into a differential operator of infinite order (“free” Hamiltonian) and a “Coulomb” potential. Harmonic analysis on the half-axis is used to define the free Hamiltonian. For rest masses comparable to, or lower than one Planck mass, the Kato-Rellich theorem is applicable and one self-adjoint extension of the full Hamiltonian is found. A boundary condition for the wave function results whose effect is to keep the shell away from the singularity. This will lead to superposition of states containing both black and white holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezin, V.A.: Quantum Black Holes and Hawking Radiation Preprint, Bures-sur-Yvette, 1991

  2. Berezin, V.A., Koziminov, N.G., Kuzmin, V.A., Tkachev, I.I.: Phys. Lett.B212, 415 (1988)

    Article  Google Scholar 

  3. Farhi, E., Guth, A.H., Guven, J.: Nucl. Phys.B339, 417 (1990)

    Article  Google Scholar 

  4. Guven, J.: Phys. Rev.D44, 3360 (1991)

    Google Scholar 

  5. Hajicek, P.: Phys. Rev.D30, 1168 (1984)

    Article  Google Scholar 

  6. Hartle, J.B., Hawking, S.W.: Phys. Rev.D28, 2960 (1983)

    Article  Google Scholar 

  7. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press 1973

    Google Scholar 

  8. Isham, C.J.: InRelativity, Groups and Topology II. De Witt, B.S., Stora, R. (eds.). Amsterdam: North-Holland 1984

    Google Scholar 

  9. Jacobson, T.: In:Conceptual Problems of Quantum Gravity. Ashtekar, A., Stachel, J. (eds.). Boston: Birkhauser 1991

    Google Scholar 

  10. Israel, W.: Nuovo Cimento44B, 1 (1966)

    Google Scholar 

  11. Kuchar, K.V.: Time and Interpretation of Quantum Gravity. Preprint, University of Utah, SLC, 1991

  12. Kuchar, K.V., Ryan, M.P.: InGravitational Collapse and Relativity. Sato, H., Nakamura, T. (eds.). Singapore: World Scientific 1986

    Google Scholar 

  13. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Vol. 4, Part 1: Beresteckii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Relativistic Quantum Theory. Oxford: Pergamon Press, p. 110, 1971

    Google Scholar 

  14. Linde, A.D.: Lett. Nuovo Cimento39, 401 (1984)

    Google Scholar 

  15. Martinez, E.A., York, J.: Phys. Rev.D40, 2124 (1989)

    Article  Google Scholar 

  16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol.2. Fourier Analysis, Self-Adjointness. New York: Academic Press 1975

    Google Scholar 

  17. Tipler, F.J., Clarke, C.J.S., Ellis, G.F.R.: In:General Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein. Held, A. (ed.). New York: Plenum Press 1980

    Google Scholar 

  18. Vilenkin, A.: Phys. Rev.D37, 888 (1988)

    Article  Google Scholar 

  19. Visser, M.: Phys. Rev.D43, 402 (1991)

    Article  Google Scholar 

  20. Witten, E.: Commun. Math. Phys.80, 381 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Yu. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajicek, P. Quantum mechanics of gravitational collapse. Commun.Math. Phys. 150, 545–559 (1992). https://doi.org/10.1007/BF02096961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096961

Keywords

Navigation