Skip to main content
Log in

Quantitative and comparative study of haematoporphyrin-derived photosensitizers on a murine tumour model

  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Eight commercially available HPD-photosensitizers intended for photodynamic therapy were tested in a murine tumour model with regard to their therapeutic efficacy. The regrowth delay of the fibrosarcoma SSK-2 on the mouse C3H, Neuherberg-line, was determined 3, 24, 48 and 72 h after injection of the drugs (dose: 9 mg kg−1 body weight). The corresponding pharmacodynamics, as measured by regrowth delay, were approximated by an exponential function and the characterizing coefficients derived. These coefficients served to quantify the photodynamic properties of the drugs.

The pharmacodynamics of five substances were compared with those obtained fluorometrically. The latter showed shorter decay constants than the therapy-correlated substances which indicates different metabolic behaviour of the therapeutic and diagnostically useful fluorescent components of haematoporphyrin-derived photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spikes JD. The historical development of ideas on applications of photosensitized reactions on health sciences. In: Bensasson RV, Jori G, Land EJ, Truscott TG (eds)Primary Photo-Processes in Biology and Medicine. New York: Plenum 1985:209

    Google Scholar 

  2. Hausmann W. Ueber die giftige Wirkung des Hämatoporphyrins auf Warmblüter bei Belichtung.Wiener Klin Wochenschrift 1909,52:1820–1

    Google Scholar 

  3. Policard A. Etudes sur les aspects offert par des tumeurs expérimentales examinées à la lumière de Woods.Comp Rend Soc Biol 1924,91:1423–4

    Google Scholar 

  4. Auler A, Banzer Q. Untersuchungen über die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren.Z Krebsforschung 1942,53:65–8

    Google Scholar 

  5. Figge FHJ. Relationship of pyrrol compounds to carcinogenesis. In: Moulton FR (ed)A.A.A.S. Res Conf on Cancer. Am Assoc Adv Sc. Washington 1944:117

  6. Figge FHJ, Weiland GS, Mangianello LO. Cancer detection and therapy: Affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins.Proc Soc Ex Biol Med 1948,68:640–1

    Google Scholar 

  7. Lipson RL, Baldes EJ. The photodynamic properties of a particular haematoporphyrin derivative.Arch Dermatol 1960,82:508–16

    PubMed  Google Scholar 

  8. Lipson RL, Baldes EJ, Olsen AM. The use of a derivative of haematoporphyrin in tumor detection.J Nat Cancer Inst 1961,26:2–11

    Google Scholar 

  9. Dougherty TJ, Boyle DG, Weishaupt KR et al. Photoradiation therapy—Clinical and drug advances. In: Kessel D, Dougherty TJ (eds)Porphyrin Photosensitization. New York: Plenum 1983:3

    Google Scholar 

  10. Bonnet R, Ridge RJ, Scourides PA, Berenbaum MC. On the nature of haematoporphyrin derivative.J Chem Soc Perkin 1981, 1:3135–40

    Google Scholar 

  11. Dougherty TJ, Potter WR, Weishaupt KR. The structure of the active component of haematoporphyrin derivative. In: Andreoni A, Cubeddu R (eds)Porphyrins in Tumor Phototherapy. New York: Plenum 1984:23. Also in: Doiron DR, Gomer CJ (eds)Porphyrin Localization and Treatment of Tumors. New York: Alan R Liss 1984:301

    Google Scholar 

  12. Sommer S, Rimington C, Moan J. Porphyrin derivatives having physical and chemical characteristics similar to those of the active components of haematoporphyrin derivative and with very strong photosensitizing effects.J Photochem Photobiol 1987,1:241–6

    Google Scholar 

  13. Truscott TG. Photochemistry of porphyrins and bile pigments in homogeneous solutions. In: Bensasson RV, Jori G, Land EJ, Truscott TG (eds)Primary Photo-Processes in Biology and Medicine. New York: Plenum 1985:309

    Google Scholar 

  14. Kummermehr J, Trott KR. Rate of repopulation in a slow and a fast growing mouse tumor. In: Kärcher KH et al (eds)Progress in Radio-Oncology. New York: Raven 1982:299

    Google Scholar 

  15. Begg AC. Analysis of growth delay data: potential pitfalls.Br J Cancer 1980,41:93–7

    Google Scholar 

  16. Stocker S. Ein Tumormodell der Maus zur Quantifizierung der photodynamischen Therapie. Diplomarbeit Universität München, realized in Zentrales Laserlaboratorium, Gesellschaft für Strahlen- und Umweltforschung (GSF), Neuherberg/München, 1986

  17. Berenbaum MC, Akande SL, Bonnett R et al. mesoTetra (hydroxyphenyl) porphyrins, a new class of potent tumour photosensitizers with favourable selectivity.Br J Cancer 1986,54:717–25

    PubMed  Google Scholar 

  18. Dougherty TJ. Photodynamic therapy. In: Kessel D (ed)Methods in Porphyrin Photosensitization. New York: Plenum 1985:313

    Google Scholar 

  19. Kessel D, Chang CK, Musselman B. Chemical, biologic and biophysical studies on haematoporphyrin derivative. In: Kessel D (ed)Methods in Porphyrin Photosensitization. New York: Plenum 1985:213

    Google Scholar 

  20. Sroka R, Ell C, Unsöld E. Bestrahlungsapplikation und Lichtdosisüberwachung für die photodynamische Lasertherapie.Biomed Technik 1988,33:240–6

    Google Scholar 

  21. Sroka R, Ell C, Gottschalk W, Hengst J, Unsöld E. Homogeneous light application and monitoring of the applied power density during PDT.J Photochem Photobiol 1989,3:456–8

    Google Scholar 

  22. Mattiello J, Hetzel F, Vandenheede L. Intratumour temperature measurements during photodynamic therapy.Photochem Photobiol 1987,46:873–9

    PubMed  Google Scholar 

  23. Evenson JF, Moan J. Photodynamic therapy of C3H tumours in mice: Effect of drug/light dose fractionation and Misonidazole.Lasers in Med Sci 1988,3:1–6

    Google Scholar 

  24. Udenfriend S.Fluorescence Assay in Biology and Medicine, Vol. 1. San Diego: Academic Press 1962

    Google Scholar 

  25. Udenfriend S.Fluorescence Assay in Biology and Medicine, Vol. 2. San Diego: Academic Press 1969

    Google Scholar 

  26. Winkelmann JW. Quantitative studies of tetraphenylporphyrinsulfonate and haematoporphyrin derivative distribution in animal tumour systems. In: Kessel D (ed)Methods in Porphyrin Photosensitization. New York: Plenum 1985:91

    Google Scholar 

  27. Wilson BC, Patterson MS. The physics of photodynamic therapy (review article).Phys Med Biol 1986,31:327–60

    PubMed  Google Scholar 

  28. Baumgartner R, Feyh J, Götz A et al. Experimental study of laser-induced fluorescence of hematoporphyrin derivative (HPD) in tumor cells and animal tissue.Lasers Med Surg 1986,1:4–9

    Google Scholar 

  29. Schneckenburger H, Unsöld E, Weinsheimer W, Jocham D. Time resolved laser fluorescence and photobleaching of single cells after photosensitization with haematoporhyrin derivative (HPD). In: Andreoni A, Cubeddu R (eds)Porphyrins in Tumor Phototherapy. New York: Plenum 1984:137

    Google Scholar 

  30. Dougherty TJ. Hematoporphyrin as a photosensitizer of tumors.Photochem Photobiol 1983,38:377–9

    PubMed  Google Scholar 

  31. Kessel D, Chou Th. Porphyrin localizing phenomena. In: Kessel D, Dougherty TJ (eds)Porphyrin Photosensitization. New York: Plenum 1983:115

    Google Scholar 

  32. Corti L, Tomio L, Calzavara F et al. Evaluation of haematoporphyrin photodynamic therapy to treat malignant tumours. In: Jori G, Perria C (eds)Photodynamic Therapy of Tumours and Other Diseases. Padova: Libreria Progetto 1985:317

    Google Scholar 

  33. Baumgartner R, Fisslinger H, Jocham D et al. A fluorescence imaging device for endoscopic detection of early stage cancer—Instrumental and experimental studies.Photochem Photobiol 1987,46:759–63

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unsöld, E., Ell, C., Jocham, D. et al. Quantitative and comparative study of haematoporphyrin-derived photosensitizers on a murine tumour model. Laser Med Sci 5, 309–316 (1990). https://doi.org/10.1007/BF02032660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02032660

Key words

Navigation