Skip to main content
Log in

Evidence for a transcellular component to the transepithelial sodium efflux in toad skin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The transepithelial efflux of sodium, from the inner to the outer surface, was measured across the isolated toad skin, mostly after abolition of the electrochemical gradient. The effects on this efflux of several agents and manipulations were studied in order to make a distinction between the paracellular component and a hypothetical transcellular one. Amiloride decreased the transepithelial efflux, while ouabain and cyanide increased it. From the known mode of action of those agents, it was inferred that part of the efflux occurred across the cell. Removal of sodium from the external solution interfered apparently with both components of the transepithelial efflux, while the action of external hypertonicity seemed to be restricted to the paracellular shunt pathway. Access of sodium from the internal solution to the active transport pool is thus suggested, with consequent increase in metabolic cost of transport. Yet, compared with the net influx, the amounts involved are very small; consequently, they escape detection by oxygen consumption measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beauwens, R., Al-Awqati, Q. 1976. Further studies on the coupling between sodium transport and respiration in toad urinary bladder.Am. J. Physiol. 231:222

    Google Scholar 

  • Bentley, P.J. 1968. Amiloride: A Potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317

    Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1976. Saturation kinetics of sodium efflux across isolated frog skin.Am. J. Physiol. 231:995

    Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1977. Effect of inhibitors on transepithelial efflux of Na and nonelectrolytes in frog skin.Am. J. Physiol. 232:C67

    Google Scholar 

  • Bindslev, N., Tormey, J., Pietras, R.J., Wright, E.M. 1974. Electrically and osmotically induced changes in permeability and structure of toad urinary bladder.Biochim. Biophys. Acta 332:286

    Google Scholar 

  • Canessa, M., Labarca, P., Leaf, A. 1976. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.J. Membrane Biol. 30:65

    Google Scholar 

  • Civan, M.M. 1970. Effects of active sodium transport on current-voltage relationship of toad bladder.Am. J. Physiol. 219:234

    Google Scholar 

  • Crabbé, J., Fanestil, D.D., Pelletier, M., Porter, G.A. 1974. Effect of ouabain on sodium transport across hormones-stimulated toad bladder and skin.Pfluegers Arch. 347:275

    Google Scholar 

  • Davies, H.E.F., Martin, D.G., Sharp, G.W.G. 1968. Differences in the physiological characteristics of bladders of toads from different geographical sources.Biochim. Biophys. Acta. 150:315

    Google Scholar 

  • Di Bona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101

    Google Scholar 

  • Ehrlich, E.N., Crabbé, J. 1968. The mechanism of action of amipramizide.Pfluegers Arch. 302:79

    Google Scholar 

  • Erlij, D., Martinez-Palomo, A. 1973. Opening of tight junctions in urinary bladders by hypertonic solutions.Fed. Proc. 32:218 (Abstr.)

    Google Scholar 

  • Fanestil, D.D., Porter, G.A., Edelman, I.S. 1967. Aldosterone stimulation of sodium transport.Biochim. Biophys. Acta 13674

    Google Scholar 

  • Finn, A.L. 1976. Changing concepts of transepithelial sodium transport.Physiol. Rev. 56:453

    Google Scholar 

  • Frazier, H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529

    Google Scholar 

  • Handler, J.S., Preston, A.S., Orloff, J. 1972. Effect of ADH, aldosterone, ouabain and amiloride on toad bladder epithelial cells.Am. J. Physiol. 222:1071

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571

    Google Scholar 

  • Herrera, F.C. 1966. Action of ouabain on sodium transport in the toad urinary bladder.Am. J. Physiol. 210:980

    Google Scholar 

  • Hviid Larsen, E. 1973. Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin.In: Transport mechanisms in epithelia. H.H. Ussing and N.A. Thorn, editors. p. 131. Munksgaard, Copenhagen

    Google Scholar 

  • Kedem, O., Essig, A. 1965. Isotope flows and flux ratios in biological membranes.J. Gen. Physiol. 48:1947

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365

    Google Scholar 

  • Mandel, L.J., Curran, P.F. 1972. Response of the frog skin to steady-state voltage clamping.J. Gen. Physiol. 59:503

    Google Scholar 

  • Morel, F. Leblanc, G. 1973. Kinetics of sodium and lithium accumulation in isolated frog skin epithelium.In: Transport mechanisms in epithelia. H.H. Ussing and N.A. Thorn, editors. p. 73. Munksgaard, Cophenhagen

    Google Scholar 

  • Nagel, W. 1976. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135

    Google Scholar 

  • Noé, G., Michotte, A., Crabbé, J. 1977. Aerobic metabolism of frog skin and its isolated layer as a function of their sodium transporting activity.Biochim. Biophys. Acta 461:231

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975. Effects of changes in the composition of the mucosal solution on the electrical properties of the toad urinary bladder epithelium.J. Membrane Biol. 20:191

    Google Scholar 

  • Rick, R., Dörge, A., Bauer, R., Thurau, K. 1976. Syncitial Na transport compartment in epithelia of frog skin and toad urinary bladder.Pfluegers Arch. 365:R11 (Abstr.)

    Google Scholar 

  • Saito, T., Lief, P.D., Essig, A. 1974. Conductance of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265

    Google Scholar 

  • Sudou, K., Hoshi, T. 1977. Mode of action of amiloride in toad urinary bladder.: An electrophysical study of the drug action on sodium permeability of the mucosal border.J. Membrane Biol. 32:115

    Google Scholar 

  • Ussing, H.H. 1966. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hyerptonicity of the outside bathing solution.Ann. N. Y. Acad. Sci. 137:543

    Google Scholar 

  • Ussing, H.H. 1969. The interpretation of tracer fluxes in terms of membrane structure.Q. Rev. Biophys. 4:365

    Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  • Voûte, C.L., Hänni, S. 1973. Relation between structure and function in frog skin.In: Transport Mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors. p. 98. Munksgaard, Cophenhagen

    Google Scholar 

  • Wade, J.B., Revel, J.P., Di Scala, V.A. 1973. Effect of osmotic gradients on intracellular junctions of the toad bladder.Am. J. Physiol. 224:407

    Google Scholar 

  • Walser, M. 1969. Reversible stimulation of sodium transport in the toad bladder by stretch.J. Clin. Invest. 48:1714

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauwens, R., Noé, G. & Crabbé, J. Evidence for a transcellular component to the transepithelial sodium efflux in toad skin. J. Membrain Biol. 40 (Suppl 1), 29–43 (1978). https://doi.org/10.1007/BF02025997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02025997

Keywords

Navigation