Skip to main content
Log in

Mechanisms of beta-lactam resistance inHaemophilus influenzae

  • Review
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

Haemophilus influenzae has become increasingly resistant to beta-lactam antibiotics. Three major mechanisms, both enzymatic and non-enzymatic, are involved. Enzymatic resistance is mainly due to production of a TEM-1 plasmid-mediated beta-lactamase, and in some cases to a new enzyme ROB-1. Of the non-enzymatic mechanisms, decreased permeability due to alteration of outer membrane proteins seems to be rare in comparison to decreased affinity of penicillin-binding proteins for beta-lactam antibiotics. Enzymatic resistance is present in about 10–20% of clinical isolates, while non-enzymatic resistance is present only in 2–4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long, S. S., Teter, M. I., Gilligan, P. H. Biotype ofHaemophilus influenzae: correlation with virulence and ampicillin resistance. Journal of Infectious Diseases 1983, 147: 800–806.

    PubMed  Google Scholar 

  2. Nikaido, H., Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiological Review 1985, 49: 1–32.

    Google Scholar 

  3. Collatz, E., Gutmann, L. Bacterial porins as mediators of antibiotic susceptibility. In: Peterson, P. K., Verhoef, J., (ed.): The antimicrobial agents annual. Volume 2. Elsevier, Amsterdam, 1987, p. 442–446.

    Google Scholar 

  4. Coulton, J. W., Mason, P., Dorrance, D. The permeability barrier ofHaemophilus influenzae type b againstβ-lactam antibiotics. Journal of Antimicrobial and Chemotherapy 1983, 12: 435–445.

    Google Scholar 

  5. Vachon, V., Lyew, D. J., Coulton, J. W. Transmembrane permeability channel across the outer membrane ofHaemophilus influenzae type b. Journal of Bacteriology 1985, 162: 918–925.

    PubMed  Google Scholar 

  6. Burns, J. L., Smith, A. L. A major outer-membrane protein functions as a porin inHaemophilus influenzae. Journal of General Microbiology 1987, 133: 1273–1277.

    PubMed  Google Scholar 

  7. Parr, T. R., Bryan, L. E. Mechanism of resistance of an ampicillin-resistantβ-lactamase negative clinical isolate ofHaemophilus type b toβ-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1984, 25: 747–753.

    PubMed  Google Scholar 

  8. Makover, S. D., Wright, R., Telep, E. Penicillin-binding inHaemophilus influenzae. Antimicrobial Agents and Chemotherapy 1981, 19: 584–588.

    PubMed  Google Scholar 

  9. Mendelman, P. M., Chaffin, D. O., Stull, T. L., Rubens, C. E., Mack, K. D., Smith, A. L. Characterization of a nonβ-lactamase-mediated ampicillin resistance inHaemophilus influenzae. Antimicrobial Agents and Chemotherapy 1984, 26: 235–244.

    PubMed  Google Scholar 

  10. Serfass, D. A., Mendelman, P. M., Chaffin, D. O., Needham, C. Ampicillin resistance and penicillin-binding proteins ofHaemophilus influenzae. Journal of General Microbiology 1986, 132: 2855–2861.

    PubMed  Google Scholar 

  11. Schryvers, A. B., Wong, S. S., Bryan, L. E. Antigenic relationships among penicillin-binding proteins 1 from members of the familiesPasteurellaceae andEnterobacteriaceae. Antimicrobial Agents and Chemotherapy 1986, 30: 559–564.

    PubMed  Google Scholar 

  12. Williams, J. D., Andrew, J. Sensitivity ofHaemophilus influenzae to antibiotics. British Medical Journal 1980, i: 134–137.

    Google Scholar 

  13. Kahn, W., Ross, S., Rodriguez, W., Controni, G., Saz, A. K. Haemophilus influenzae type b resistant to ampicillin. Journal of the American Medical Association 1974, 229: 298–301.

    PubMed  Google Scholar 

  14. Williams, J. D., Kattan, S., Cavanagh, P. Penicillinase production byHaemophilus influenzae. Lancet 1974, ii: 103.

    Google Scholar 

  15. Williams, J. D., Moosdeen, F. Antibiotic resistance inHaemophilus influenzae: epidemiology, mechanisms and therapeutic possibilities. Reviews of Infectious Diseases 1986, 8: S555-S561.

    PubMed  Google Scholar 

  16. Doern, G. V., Jorgensen, J. H., Thornsberry, C., Preston, D. A., Redding, S. J., Maher, L. A. National collaborative study of the prevalence of antimicrobial resistance among clinical isolates ofHaemophilus influenzae. Antimicrobial Agents and Chemotherapy 1988, 32: 180–185.

    PubMed  Google Scholar 

  17. Dabernat, H. Activité du réseau de surveillance nationale permanent des infections àHaemophilus influenzae. Bulletin d'Epidémiologie Hebdomadaire 1986, 1: 2–3.

    Google Scholar 

  18. Medeiros, A. A., Levesque, R., Jacoby, G. A. An animal source of ROB-1β-lactamase ofHaemophilus influenzae type b. Antimicrobial Agents and Chemotherapy 1986, 29: 212–215.

    PubMed  Google Scholar 

  19. De Graaff, J., Elwell, L. P., Falkow, S. Molecular nature of twoβ-lactamase-specifying plasmids isolated fromHaemophilus influenzae type b. Journal of Bacteriology 1976, 126: 439–446.

    PubMed  Google Scholar 

  20. Jahn, G., Laufs, R., Koulfers, P. M., Kolenda, H. Molecular nature of twoHaemophilus influenzae R factors containing resistance and multiple integration of drug resistance transposons. Journal of Bacteriology 1979, 138: 584–587.

    PubMed  Google Scholar 

  21. Mendelman, P. M., Doroshow, C. A., Gandy, S. L., Syriopoulou, V., Wrigen, C. P., Smith, A. L. Plasmid mediated resistance in multiply resistantHaemophilus influenzae type b causing meningitis: molecular characterization of one strain and review of literature. Journal of Infectious Diseases 1984, 150: 30–39.

    PubMed  Google Scholar 

  22. Mendelman, P. M., Syriopoulou, V. P., Gandy, S. L., Ward, J. I., Smith, A. L. Molecular epidemiology of plasmid mediated ampicillin resistance inHaemophilus influenzae type b: isolates from Alaska. Journal of Infectious Diseases 1985, 151: 1061–1071.

    PubMed  Google Scholar 

  23. Scheifele, D. W., Fussel, S. J., Roberts, M. C. Characterization of ampicillin-resistantHaemophilus para-influenzae. Antimicrobial Agents and Chemotherapy 1982, 21: 734–739.

    PubMed  Google Scholar 

  24. Moseley, S. L., Samadpour-Motalebi, M., Falkow, S. Plasmid association and nucleotide sequence relationships of two genes encoding heat-stable enterotoxin production inEscherichia coli H-10407. Journal of Bacteriology 1983, 156: 441–443.

    PubMed  Google Scholar 

  25. Goldstein, F. W., Boisivon, A., Leclerc, P., Acar, J. F. Sensibilité d'Haemophilus sp. aux antibiotiques. Transfert de résistance aEscherichia coli. Pathologie et Biologie 1977, 25: 323–332.

    PubMed  Google Scholar 

  26. Joly, B., Delmas, C., Rich, C., Prere, M. F., Livielle, V., Dabernat, H. Un nouveau mécanisme de résistance à l'ampicilline par production deβ-lactamase ROB-1 chez une souche d'Haemophilus influenzae isolée en France. La Presse Médicale 1987, 16: 916–917.

    Google Scholar 

  27. Medeiros, A. A., O'Brien, T. Ampicillin resistantHaemophilus influenzae type b possessing TEM typeβ-lactamase but little permeability barrier to ampicillin. Lancet 1975, i: 716–718.

    Google Scholar 

  28. Laferriere, C., Marks, M. I., Welch, D. F. Effect of inoculum size onHaemophilus influenzae type b susceptibility to new and conventional antibiotics. Antimicrobial Agents and Chemotherapy 1983, 24: 287–289.

    PubMed  Google Scholar 

  29. Syriopoulou, V. Ph., Scheifele, D. W., Sack, C. M., Smith, A. L. Effect of inoculum size on the susceptibility ofHaemophilus influenzae b toβ-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1979, 16: 510–513.

    PubMed  Google Scholar 

  30. Sanson-Le-Pors, M. J., Casin, I. Haemophilus et antibiotiques In: Courvalin, P., Goldstein, F., Philippon, A., Sirot, J. (ed.): L'Antibiogramme. M.P.C.-Videom, Paris, 1985, p. 81–86.

    Google Scholar 

  31. Barry, L. A., Jones, R. N., Thornsberry, C. Alpacillin (PC-904): spectrum of activity andβ-lactamase hydrolysis inhibition. Diagnostic Microbiology and Infectious Diseases 1985, 3: 7–17.

    Google Scholar 

  32. Sanders, C. C. Comparative activity of mezlocillin, penicillin, ampicillin, carbenicillin and ticarcillin against gram-positive bacteria. Antimicrobial Agents and Chemotherapy 1981, 20: 843–846.

    PubMed  Google Scholar 

  33. Campos, J., Garia Tornel, S. Comparative susceptibility of ampicillin and chloramphenicol resistantHaemophilus influenzae to fifteen antibiotics. Journal of Antimicrobial Chemotherapy 1987, 19: 297–301.

    PubMed  Google Scholar 

  34. Campos, J. M., Gill, C. J., Ahonkhai, V. I. In vitro activity of imipenem against 100 strains of serotype b and nontypableHaemophilus influenzae, including strains resistant to ampicillin, chloramphenicol or both. Journal of Antimicrobial Chemotherapy 1985, 16: 549–544.

    PubMed  Google Scholar 

  35. Liljequist, B. O., Gezelius, L. In vitro activity of amoxycillin plus clavulanic acid againstHaemophilus influenzae andBranhamella catarrhalis. European Journal of Clinical Microbiology 1986, 5: 615–621.

    PubMed  Google Scholar 

  36. Wise, R., Andrew, J. M., Bedford, K. A. Clavulanic and CP 45-899: a comparison of their in vitro activity in combination with ampicillin. Journal of Antimicrobial Chemotherapy 1980, 6: 197–201.

    PubMed  Google Scholar 

  37. Gutmann, L., Kitzis, M. D., Yamabé, S., Acar, J. F. Comparative evaluation of a newβ-lactamase: inhibitor, YTR 830, combined with differentβ-lactam antibiotics against bacteria harboring knownβ-lactamases. Antimicrobial Agents and Chemotherapy 1986, 29: 955–957.

    PubMed  Google Scholar 

  38. Newsom, S. B. W., Mattews, J. Ampicillin resistance inHaemophilus influenzae. Test method for activity of acylureidopenicillins, cephamycins and new cephalosporins. Journal of Antimicrobial Chemotherapy 1982, 10: 527–532.

    PubMed  Google Scholar 

  39. Malouin, F., Schryvers, A. B., Bryan, L. E. Cloning and expression of genes responsible for altered penicillin-binding proteins 3a and 3b inHaemophilus influenzae. Antimicrobial Agents and Chemotherapy 1987, 31: 286–291.

    PubMed  Google Scholar 

  40. Chen, H. Y., Williams, J. D. Temocillin compared to ampicillin againstHaemophilus influenzae and with other penicillins against intestinal aerobic gram-negative rods. Journal of Antimicrobial Chemotherapy 1982, 10: 279–287.

    PubMed  Google Scholar 

  41. Tomasz, A. The mechanism of the irreversible antimicrobial effects of penicillins. Annual Review of Microbiology 1979, 33: 113–137.

    PubMed  Google Scholar 

  42. Bergeron, M., Lavoie, G. Tolerance ofHaemophilus influenzae toβ-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1985, 28: 320–325.

    PubMed  Google Scholar 

  43. Liu, H., Tomasz, A. Penicillin tolerance in multipe drug resistant natural isolates ofStreptococcus pneumoniae. Journal of Infectious Diseases 1985, 152: 365–372.

    PubMed  Google Scholar 

  44. Mandelman, P., Chaffin, D. O., Clausen, C., Stall, T. L., Needham, C., Williams, J. D., Smith, A. Failure to detect ampicillin-resistant, non-β-lactamase producingHaemophilus influenzae by standard disk susceptibility testing. Antimicrobial Agents and Chemotherapy 1986, 30: 274–280.

    PubMed  Google Scholar 

  45. Philpott Howard, J., Seymour, A., Williams, J. D. Accuracy of methods used for susceptibility testing ofHaemophilus influenzae in United Kingdom laboratories. Journal of Clinical Pathology 1983, 36: 1105–1110.

    PubMed  Google Scholar 

  46. Zimmerman, W., Rosselet, A. Function of the outer membrane ofEscherichia coli as a permeability barrier toβ-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1977, 12: 368–372.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutmann, L., Williamson, R., Collatz, E. et al. Mechanisms of beta-lactam resistance inHaemophilus influenzae . Eur. J. Clin. Microbiol. Infect. Dis. 7, 610–615 (1988). https://doi.org/10.1007/BF01964237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01964237

Keywords

Navigation