Skip to main content

Advertisement

Log in

Inhibition of tumor cell growth by a human B-cell line

  • Published:
Biotherapy

Abstract

An Adenocarcinoma cell line (Breast-M) and an Epstein-Barr virus (EBV)-infected B-cell line (Hairy-BM) were established from breast tumor tissue. The Hairy-BM was CD20+, CD25 (Tac)+ and surface immunoglobulin (sIg)+. Hairy-BM suppressed the in vitro proliferation of Breast-M in a time and a dose-dependent manner. The suppression was also found in 5 different human tumor targets showing tumor-Hairy-BM binding, but not; in 2 murine tumor targets showing no significant tumor-Hairy-BM binding. Lytic activity of Hairy-BM was found only against Breast-M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

sIg :

Surface immunoglobulin

CTL :

Cytotoxic T-cells

NK :

Natural killer

IL2 :

Interleukin 2

LAK :

Lymphokine activated killer

CSN :

Culture supernatant

MTT :

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoolium bromide

PCR :

Polymerase chain reaction

TIL :

Tumor-infiltrating lymphocytes

HCL :

Hairy cell leukemia

TNF :

Tumor necrosis factor

References

  1. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986; 233: 1318–1321.

    PubMed  Google Scholar 

  2. Herberman RB. Natural killer cells. In: Nelson DS. Natural immunity. Sydney, Academic Press 1989; 7-1-122.

    Google Scholar 

  3. Lichtenstein AK, Kahle J. Anti-tumor effect of inflammatory neutrophil characteristics of in vivo generation and in vitro tumor cell lysis. Int. J Cancer 1985; 35: 121–127.

    PubMed  Google Scholar 

  4. De Boer RI, Hogeweg P, Dullens HFJ, De Weger RA, Den Otter W. Macrophage T lymphocyte interactions in the antitumor immune response: A mathematical model. J Immunol 1985; 134: 2748–2758.

    PubMed  Google Scholar 

  5. Robb RJ, Green WC. Direct demonstration of the identity of T cell growth factor binding protein and Tac antigen. J Exp Med 1983; 158: 1332–1337.

    PubMed  Google Scholar 

  6. Tsudo M, Uchiyama T, Uchino H. Expression on Tac antigen on activated normal human B cells. J. Exp Med 1984; 160: 612–617.

    PubMed  Google Scholar 

  7. Zubler RH, Lowenthal JW, Erard F, Hashimoto N, Devos R, Macdonald HR. Activated B cells express receptors for, and proliferate in response to, pure interleukin 2. J Exp Med 1984; 160: 1170–1183.

    PubMed  Google Scholar 

  8. Mingari MC, Gerosa F, Carra G, Accolla RS, Moretta A, Zubler RH, Waldmann TA, Moretta L. Human interleukin-2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells. Nature 1984; 312: 641–643.

    PubMed  Google Scholar 

  9. Muraguchi A, Kehrl JH, Longo DL, Volkmann DJ, Smith KA, Fauchi AS. Interleukin-2 receptors on human B cells. Implications for the role of interleukin-2 in human cell function. J Exp Med 1985; 161: 181–197.

    PubMed  Google Scholar 

  10. Nakagawa T, Hirano T, Nakagawa N, Yoshizaki K, Kishimoto T. Effect of recombinant IL 2 and -IFN on proliferation and differentiation of human B cells. J Immunol 1985; 134: 959–966.

    PubMed  Google Scholar 

  11. Jelinek DF, Splawski JB, Lipsky PE. The roles of interleukin 2 and interferon- in in human B cells activation, growth and differentiation. Eur J Immunol 1986; 16: 925–932.

    PubMed  Google Scholar 

  12. Damle NK, Doyle LV, Bradley EC. Interleukin 2-activated human killer cells are derived from phenotypically heterogeneous precursors. J Immunol 1986; 137: 2814–2822.

    PubMed  Google Scholar 

  13. Grimm EA, Robb RJ, Roth JA et al. Lymphokine-activated killer cell phenomenon. III. Evidence that II.-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells. J Exp Med 1983; 158: 1356–1361.

    PubMed  Google Scholar 

  14. Welsh RM, Haspel MV, Parker DC, Holmes KV. Natural cytotoxicity against mouse hepatitis virus-infected cells. II. A cytotoxic effector cell with a B lymphocyte phenotype. J Immunol 1986; 136: 1454–1460.

    PubMed  Google Scholar 

  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55–63.

    PubMed  Google Scholar 

  16. Ward PA, Lepow IH, Newman LJ. The role of serum complement in chemotaxis of leukocytes in vitro. J Exp Med 1965; 122: 327–346.

    PubMed  Google Scholar 

  17. Bouroncle BA. Leukemic reticuloendotheliosis. Blood 1979; 53: 412–436.

    PubMed  Google Scholar 

  18. Korsmeyer SJ, Green VPC, Cossmann J, Hsu S-M, Jensen JP, Necker LM, Marshall SL, Bakhshi A, Depper JM, Leonard WJ, Jaffe ES, Waldmann TA. Rearrangement and expression of immunoglobuline genes and express of Tac antigen in hairy cell leukemia. Proc Natl Acad Sci USA 1983; 80: 4522–4526.

    PubMed  Google Scholar 

  19. Hanson CA, Gribbin TE, Schnitzer B, Schlegelmilch JA, Mitchell BS, Stoolman LM. CD11c (Leu-M5) expression characterizes a B-cell chronic lymphoproliferative disorder with features of both chronic lymphocytic leukemia and hairy cell leukemia. Blood 1990; 76: 2360–2367.

    PubMed  Google Scholar 

  20. Hayashi T, Arai S, Sendo F. The mechanisms of cytotoxicity to tumor cells by polymorphonuclear leukocytes stimulated with cytokines. Jpn J Cancer Res (Gann) 1988; 79: 375–383.

    Google Scholar 

  21. Robertson MJ, Caligiuri MA, Manley JJ, Levine H, Ritz J. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol 1990; 145: 3194–3201.

    PubMed  Google Scholar 

  22. Williamson BD, Carswell EA, Rubin BY, Prendergast JS, Old LJ. Human tumor necrosis factor produced by human B-cell lines: Synergistic cytotoxic interaction with human interferon. Proc Natl Acad Sci USA 1983; 80: 5397–5401.

    PubMed  Google Scholar 

  23. Kimpel GR et al. Lymphotoxin and interferon production by rosette separated human peripheral blood leukocytes. Cell Immunol 1973; 32: 293–301.

    Google Scholar 

  24. Hafeman DG, Lucas ZJ. Polymorphonuclear leukocyte-mediated, antibody-dependent, cellular cytotoxicity against tumor cells; dependence on oxygen and the respiratory burst. J Imunol 1979; 123: 55–62.

    Google Scholar 

  25. Gillis S, Smith KA. Long-term culture of tumor-specific cytotoxic T-cells. Nature 1977; 268: 154–156.

    PubMed  Google Scholar 

  26. Rosenstein M, Yron I, Kaufmann Y, Rosenberg SA. Lymphokine-activated killer cells: Lysis of fresh syngeneic natural killer-resistant murine tumor cells by lymphocytes in interleukin 2. Cancer Res 1984; 44: 1946–1953.

    PubMed  Google Scholar 

  27. Merluzzi VJ, Weite K, Savage DM, Last-Barney K, Mertelsmann R. Expansion of cyclophosphamide resistant cytotoxic precursors in vitro and in vivo by purified human IL2. J Immunol 1983; 131: 806–809.

    PubMed  Google Scholar 

  28. Domzig W, Stadler VM, Herberman RB. IL2 dependence of human NK cell activity. J Immunol 1983; 130: 1970–1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katano, M., Kubota, E., Nagumo, F. et al. Inhibition of tumor cell growth by a human B-cell line. Biotherapy 8, 1–6 (1994). https://doi.org/10.1007/BF01878115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01878115

Key words

Navigation