Skip to main content
Log in

Regulation of basolateral membrane potential after stimulation of Na+ transport in proximal tubules

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We have previously shown that stimulation of apical Na-coupled glucose and alanine transport produces a transient depolarization of basolateral membrane potential (V bl) in rabbit proximal convoluted tubule (PCT. Sl segment). The present study is aimed at understanding the origin of the membrane repolarization following the intial effect of addition of luminal cotransported solutes. Luminal addition of 10–15mMl-alanine produced a rapid and highly significant depolarization ofV bl (20.3±1.1 mV,n=15) which was transient and associated with an increase in the fractional K+ conductance of the basolateral membrane (t K) from 8 to 29% (P<0.01,n=6). Despite the significant increase int K, the repolarization was only slightly reduced by the presence of basolateral Ba2+ (2mM,n=6) or quinine (0.5 mM,n=5). The repolarization was greatly reduced in the presence of 0.1 mM 4-acetamino-4′isothiocyamostilbene-2,2′-disulfonic acid (SITS) and blunted by bicarbonate-free solutions. Intracellular pH (pH i ) determined with the fluorescent dye 2′, 7′-bis-2-carboxyethyl-5(and-6)-carboxyfluorescein (BCECF), averaged 7.39±0.02 in control solution (n=9) and increased to 7.50±0.03 in the first 15 sec after the luminal application of alanine. This was followed by a significant acidification averaging 0.16±0.01 pH unit in the next 3 min. In conclusion, we believe that, contrary to other leaky epithelia, rabbit PCT can regulate its basolateral membrane potential not only through an increase in K+ conductance but also through a cellular acidification reducing the basolateral HCO 3 exit through the electrogenic Na-3(HCO3) cotransport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, J.S., Potts, D.J. 1989. The effect of acetazolamide upon transient responses of basolateral membrane potential of rabbit kidney proximal tubule.J. Physiol. 416:337–348

    Google Scholar 

  2. Beck, J.S., Potts, D.J. 1990. Cell swelling, co-transport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules.J. Physiol. 425:369–378

    Google Scholar 

  3. Bello-Reuss, E., Weber, M.R. 1986. Electrophysiological studies of primary cultures of proximal tubule cells.Am. J. Physiol. 251:F490-F498

    Google Scholar 

  4. Biagi, B.A. 1985. Effects of the anion transport inhibitor, SITS. on the proximal straight tubule of the rabbit perfusedin vitro.J. Membrane Biol. 88:25–31

    Google Scholar 

  5. Biagi, B.A., Sohtell, M. 1986. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule.Am. J. Physiol. 250:F267-F272

    Google Scholar 

  6. Cardinal, J., Lapointe, J.-Y., Laprade, R. 1984. Luminal and peritubular ionic substitutions and intracellular potential of rabbit proximal convoluted tubule.Am. J. Physiol. 247:F352-F364

    Google Scholar 

  7. Diamond, J.M. 1982. Transcellular cross-talk between epithelial cell membrane.Nature 300:683–685

    Google Scholar 

  8. Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodiumcoupled amino acid and sugar transport byNecturus small intestine.J. Membrane Biol. 66:25–39

    Google Scholar 

  9. Harvey, B.J., Thomas, S.R., Ehrenfeld, J. 1988. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium.J. Gen. Physiol. 92:767–791

    Google Scholar 

  10. Horisberger, J.D., Giebisch, G. 1987. Na−K-pump current inAmphiuma collecting tubule: Dependence on voltage and external K+ concentration.J. Gen. Physiol. 90:22a

    Google Scholar 

  11. Hudson, R.L., Schultz, S.G. 1984. Sodium-coupled sugar transport: Effects on intracellular sodium activities and sodium pump activity.Science 244:1237–1239

    Google Scholar 

  12. Lang, F., Messner, G., Rehwald, W. 1986. Electrophysiology of sodium-coupled transport in proximal renal tubules.Am. J. Physiol. 250:F953–962

    Google Scholar 

  13. Lapointe, J.Y., Garneau, L., Bell, P.D., Cardinal, J. 1990. Membrane cross-talk in the mammalian proximal tubule during alterations in transepithelial sodium transport.Am. J. Physiol. 258:F339-F345

    Google Scholar 

  14. Lapointe, J.Y., Laprade, R., Cardinal, J. 1984. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule.Am. J. Physiol. 247:F637-F639

    Google Scholar 

  15. Laprade, R., Lapointe, J.-Y., Breton, S., Duplain, M., Cardinal, J. 1991. Intracellular potassium activity in mammalian proximal tubule: Effect of perturbation in transepithelial sodium transport.J. Membrane Biol. (in press)

  16. Lau, K.R., Hudson, R.L., Schultz, S.G. 1984. Cell swelling induces a barium inhibitable potassium conductance in the basolateral membrane ofNecturus small intestine.Proc. Natl. Acad. Sci. USA 81:3591–3594

    Google Scholar 

  17. Messner, G., Koller, A., Lang, F. 1985. The effect of phenylalanine on intracellular pH and sodium activity in proximal convoluted tubule cells of the frog kidney.Pfluegers Arch. 404:145–149

    Google Scholar 

  18. Moran, W.M., Hudson, R.L., Schultz, S.G. 1986. Transcellular sodium transport and intracellular sodium activities in rabbit gallbladder.Am. J. Physiol. 251:G155-G159

    Google Scholar 

  19. Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by flush-through.Am. J. Physiol. 241:F579-F590

    Google Scholar 

  20. Siebens, A.W., Boron, W.F. 1989. Depolarization-induced alkalinization in proximal tubules. I. Characteristics and dependence on Na+.Am. J. Physiol. 256:F342-F353

    Google Scholar 

  21. Siebens, A.W., Boron, W.F. 1989. Depolarization-induced alkalinization in proximal tubules. II. Effects of lactate and SITS.Am. J. Physiol. 256:F354-F365

    Google Scholar 

  22. Wang, W., Wang, Y., Silbernagl, S., Oberleithner, H. 1988. Fused cells of frog proximal tubule: II. Voltage-dependent intracellular pH.J. Membrane Biol. 101:259–265

    Google Scholar 

  23. Yoshitomi, K., Burckhardt, B.-Ch., Fromter, E. 1985. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of renal proximal tubule.Pfluegers Arch. 405:360–366

    Google Scholar 

  24. Zuidema, T.M., Kamermans, M., Siegenbeek van Heukelom, J. 1986. Influence of glucose absorption on ion activities in cells and submucosal space in goldfish intestine.Pfluegers Arch. 407:292–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapointe, JY., Duplain, M. Regulation of basolateral membrane potential after stimulation of Na+ transport in proximal tubules. J. Membrain Biol. 120, 165–172 (1991). https://doi.org/10.1007/BF01872399

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872399

Key Words

Navigation