Skip to main content
Log in

Mechanisms for the effects of acetylcholine on sodium transport in frog skin

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In frog skin (Rana temporaria) acetylcholine applied to the serosal surface produces either a sustained inhibition or sustained stimulation of short-circuit current (SCC). The former effect is accompanied by a reduction and the latter by an increase in total tissue conductance. Both effects of acetylcholine can be accounted for, within experimental error, by changes in net sodium flux across the tissue. By use of selective agonists and antagonists it is concluded that acetylcholine interacts with muscarinic receptors in the serosal membrane. The effects of cholinoceptor agents are also seen with isolated epithelium.

The stimulatory effect of acetylcholine is potentiated by theophylline and blocked by inhibitors of prostaglandin synthetase and by mepacrine. It is suggested that acetylcholine stimulates transport by liberating prostaglandins which may then activate adenylcyclase. The inhibitory effect of acetylcholine is correlated with a reduction in cyclic AMP content of the epithelium. Calcium appears to be an important determinant of the type of response seen with acetylcholine, but the mechanism is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of the frog skin.J. Physiol. (London) 212:195

    Google Scholar 

  • Albert, W.C., Handler, J.S. 1974. Effects of PGE1, indomethacin and polyphloretin phosphate in the toad bladder response to ADH.Am. J. Physiol. 226:1382

    Google Scholar 

  • Balaban, R.S., Mandel, L.J. 1979. Comparison of the effects of increased intracellular calcium and antidiuretic hormone on active sodium transport in frog skin. A study with the calcium ionophore A23187.Biochim. Biophys. Acta 555:112

    Google Scholar 

  • Barlow, R.B. 1964. Introduction to Chemical Pharmacology. Methuen, London

    Google Scholar 

  • Barnes, T.S. 1940. The modification of the electrical potential of frog skin by acetylcholine.Am. J. Physiol. 130:557

    Google Scholar 

  • Blackwell, G.J., Flower, R.J., Nijkamp, F.P., Vane, J.R. 1978. Phospholipase A2 activity of guinea-pig isolated perfused lungs: Stimulation and inhibition by anti-inflammatory steroids.Brit. J. Pharmacol. 62:79

    Google Scholar 

  • Bolton, T.B. 1979. Mechanisms of action of transmitters and other substances on smooth muscle.Physiol. Rev. 59:606

    Google Scholar 

  • Brown, B.L., Albano, J.D.M., Ekins, R.P., Sgherzi, A.M., Tampion, W. 1971. A simple and sensitive saturation assay method for the measurement of adenosine 3′,5′ cyclic monophosphate.Biochem. J. 121:561

    Google Scholar 

  • Cuthbert, A.W., Young, J.M. 1973. The number of muscarinic receptors in chick amnion muscle.Br. J. Pharmacol. 49:498

    Google Scholar 

  • Diekmann, J.M., Jobke, A., Peskar, B.A., Hertting, G. 1977. Angiotensin II-induced contraction of rabbit spleenic capsular strips and release of prostaglandins.N.S. Arch. Pharmacol. 297:177

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137

    Google Scholar 

  • Gimbrone, A.A., Alexander, R.W. 1977. Prostaglandin production by vascular endothelial and smooth muscle cells in culture.In: Prostaglandins in Haematology. M.J. Silver, J.B. Smith, and J.J. Koesis, editors. p. 121. Spectrum, London

    Google Scholar 

  • Goldberg, N.D., Haddox, M.K., Nikol, S.E., Glass, D.B., Sanford, C.H., Kuehl, F.A., Enstensen, R. 1975. Biological regulation through opposing influences of cyclic GMP and cyclic AMP The yin-yang hypothesis.Adv. Cyclic. Nucl. Res. 5:307

    Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular calcium and the regulation of sodium transport in frog skin.Proc. R. Soc. London B 202:353

    Google Scholar 

  • Hall, W.J., O'Donoghue, J.P., O'Regan, M.G., Penny, W.J. 1976. Endogenous prostaglandins, adenosine 3′,5′ monophosphate and sodium transport across the isolated frog skin.J. Physiol. (London) 258:731

    Google Scholar 

  • Isakson, P.C., Raz, A., Denny, S.E., Wyche, A., Needleman, P. 1977. Hormonal stimulation of arachidonate release from isolated perfused organs. Relationship to prostaglandin synthesis.Prostaglandins 14:853

    Google Scholar 

  • Jard, S. 1974. Adrenergic receptors in epithelia.In: Drugs and Transport Processes. B.A. Callingham, editor. p. 111. Macmillan, London

    Google Scholar 

  • Johnsen, A.H., Nielsen, R. 1978. Effects of antidiuretic hormone, aginine vasotocin, theophylline, filipin and A23187 on cAMP in isolated frog skin epithelium (Rana temporaria).Acta Physiol. Scand. 102:281

    Google Scholar 

  • Johnsen, A.H., Nielsen, R. 1980. Sodium nitroprusside induced cGMP accumulation in isolated frog skin epithelium. Effect on cAMP, hydroosmotic and natriferic response to antidiuretic hormone.Acta Physiol. Scand. 108:373

    Google Scholar 

  • Junstad, M., Wennmalm, A. 1974. Release of prostaglandin from the rabbit isolated heart following vagal nerve stimulation or acetylcholine infusion.Br. J. Pharmacol. 52:375

    Google Scholar 

  • Koblick, D.C., Goldman, M.H., Page, N. 1962. Cholinesterase and active sodium transport in frog skin.Am. J. Physiol. 203:901

    Google Scholar 

  • Kunze, H., Vogt, W. 1971. Significance of phospholipase A for prostaglandin formation.Ann. N.Y. Acad. Sci. 180:123

    Google Scholar 

  • Lapetina, E.G. 1979. Interrelationships between endogenous activities of phospholipase C and A2 in stimulated platelets. IV Int. Prostaglandin Conference,Abstr. 66

  • Lipson, L.C., Sharp, G.W.G. 1971. Effects of PGE1 on sodium transport and osmotic flow in the toad bladder.Am. J. Physiol. 220:1046

    Google Scholar 

  • Ludens, J.H. 1978. Studies on the inhibition of Na+ transport in toad bladder by the ionophore A23187.J. Pharmacol. Exp. Ther. 206:414

    Google Scholar 

  • Matsuzawa, H., Nirenberg, M. 1975. Receptor mediated shifts in cAMP levels in neuroblastoma cells.Proc. Nat. Acad. Sci. USA 72:3472

    Google Scholar 

  • McAfee, R.D. 1964. Variability in short-circuited frog skin to acetylcholine.Physiologist 7:201

    Google Scholar 

  • McAfee, R.D. 1968. Effect of a lipid extract of frog skin on short-circuit current and sodium transport of isolated frog skin.Biochim. Biophys. Acta 150:131

    Google Scholar 

  • McAfee, R.D., Locke, W. 1967. Effect of angiotensin amide on sodium isotope flux and short circuit current of isolated frog skin.Endocrinology 81:1301

    Google Scholar 

  • Michell, R.H. 1975. Inositol phospholipids and cell surface receptor function.Biochim. Biophys. Acta 415:81

    Google Scholar 

  • Michell, R.H., Kirk, C.J., Billah, M.M. 1979. Hormonal stimulation of phosphatidyl inositol breakdown with particular reference to the hepatic effects of vasopressin.Biochem. Soc. Trans. 7:861

    Google Scholar 

  • Murad, F., Chi, YM., Rall, T.W., Sutherland, E.W. 1962. The effects of catecholamines and choline esters on the formation of adenosine 3′-5′-phosphate by preparations from cardiac muscle and liver.J. Biol. Chem. 237:1233

    Google Scholar 

  • Nagel, W. 1976. The intracellular electrical profile of the frog skin epithelium.Pfluegers Arch. 365:135

    Google Scholar 

  • Nielsen, R. 1978. Effect of the polyene antibiotic filipin and the calcium ionophore A23187 on sodium transport in isolated frog skin (Rana temporaria).J. Membrane Biol. Special Issue:331

    Google Scholar 

  • Orloff, J., Zusman R. 1978. Role of prostaglandin E (PGE) in the modulation of the action of vasopressin on water flow in the urinary bladder of the toad and mammalian kidney.J. Membrane Biol. Special Issue:297

    Google Scholar 

  • Puppi, A., Dely, M. 1978. The role of Cl ions in the neurotransmitter and redox regulation of ion movements through isolated frog skin.Comp. Biochem. Physiol. 59c:177

    Google Scholar 

  • Puppi, A., Szalay, L., Dely, M. 1975. Interactions between the redox state of the biophase and the effect of acetylcholine on the activity of Na++K+ ATPase inRana esculenta.Comp. Biochem. Physiol. 50c:75

    Google Scholar 

  • Ramwell, P.W., Shaw, J.E. 1970. Biological significance of the prostaglandins.Rec. Prog. Hormone Res. 26:139

    Google Scholar 

  • Ramwell, P.W., Shaw, J.E., Douglas, W.W., Poisner, A.M. 1966. Efflux of prostaglandin from adrenal glands stimulated with acetylcholine.Nature (London) 210:273

    Google Scholar 

  • Sahib, M.K., Schwartz, J.H., Handler, J.s. 1978. Inhibition of toad urinary bladder sodium transport by carbamylcholine. Possible role of cyclic GMP.Am. J. Physiol. 235:F586

    Google Scholar 

  • Sanders, K.M., Ross, G. 1978. Effects of endogeneous prostaglandin E on intestinal motility.Am. J. Physiol. 234:E204

    Google Scholar 

  • Sapirstein, V.S., Scott, W.N. 1973. Cyclic AMP and sodium transport. Quantitative and temporal relationships in toad urinary bladder.J. Clin. Invest. 52:2379

    Google Scholar 

  • Schilb, T.P. 1969. Effect of a cholinergic agent on sodium transport across isolated turtle bladders.Am. J. Physiol. 216:514

    Google Scholar 

  • Schoeffeniels, E., Salee, M.L. 1965. The effects of the electrical stimulation of the brachial plexus on the potential difference of frog skin.Comp. Biochem. Physiol. 14:587

    Google Scholar 

  • Spinelli, F., Walther, A. 1979. Modulation by prostaglandins of angiotensin II stimulation of sodium transport in the proximal tubule of the rat.In: Hormonal control of Epithelial Transport Inserm, Paris

  • Stoner, J., Manganiello, V.C., Vaughan, M. 1973. Effects of bradykinin and indomethacin on cyclic GMP and cyclic AMP in lung slices.Proc. Natl. Acad. Sci. USA 70:3830

    Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of the electric current in the short circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  • Watanabe, A.M., McConnaughey, M.M., Strawbridge, R.A., Fleming, J.W., Jones, L.R., Besch, H.R. 1978. Muscarinic cholinergic receptor modulation of β-adrenergic receptor affinity for catecholamines.J. Biol. Chem. 253:4833

    Google Scholar 

  • Watlington, C.O. 1968. Effect of catecholamines and adrenergic blockade on sodium transport in isolated frog skin.Am. J. Physiol. 214:1001

    Google Scholar 

  • Wiesmann, W., Sinha, S., Klahr, S.1977. Effects of ionophore A23187 in base-line and vasopressin-stimulated sodium transport in the toad bladder.J. Clin. Invest. 59:418

    Google Scholar 

  • Wiesmann, W., Sinha, S., Yates, J., Klahr, S. 1978. Cholinegic agents inhibit sodium transport across the isolated toad bladder.Am. J. Physiol. 235:F564

    Google Scholar 

  • Wong, P.Y.D., Bedwani, J.R., Cuthbert, A.W. 1972. Hormone action and the levels of cyclic AMP and prostaglandins in the toad bladder.Nature New Biol. 238:27

    Google Scholar 

  • Wooster, M.J. 1970. The effects of prostaglandins on sodium transport and permeability in toad bladder. Ph.D. Thesis. University of Cambridge, Cambridge

    Google Scholar 

  • Zusman, R.M., Keiser, H.R. 1977. Prostaglandin E2 biosynthesis by rabbit renomedullary interstitial cells in tissue culture: Mechanism of stimulation by angiotensin II, bradykinin and arginine vasopressin.J. Biol. Chem. 252:2069

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuthbert, A.W., Wilson, S.A. Mechanisms for the effects of acetylcholine on sodium transport in frog skin. J. Membrain Biol. 59, 65–75 (1981). https://doi.org/10.1007/BF01870822

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870822

Keywords

Navigation