Skip to main content
Log in

Lipid-polypeptide interactions in bilayer lipid membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The modifications of the electrical properties of bilayer lipid membranes (BLM) composed of cholesterol and an ionic surfactant upon interaction with charged polypeptides were studied. The addition of 10−8 m polylysine (Ps+) to one side of anionic cholesterol dodecylphosphate BLM increases the specific membrane conductance over 1000-fold (from 10−8 to 10−5 mho/cm2) and develops a cationic transmembrane potential larger than 50 mV. This potential is reverted by addition of polyanions such as RNA, polyglutamic or polyadenilic acid to the same side on which Ps+ is present, by addition of Ps+ to the opposite side, or by addition of trypsin to either side. Both conductance and potential changes are hindered by increasing the ionic strength or by raising the pH of the bathing medium, disappearing above pH 11.5 where it is known that Ps+ folds into an α-helix. The interaction of polyglutamic acid (PGA) with a cationic cholesterol-hexadecyltrimethylammonium bromide BLM results in increased membrane conductance and development of an anionic transmembrane potential which is reverted by addition of polycations to the same aqueous phase where PGA is present. Addition of either Ps+ or PGA to one or both sides of a neutral BLM composed of 7-dehydrocholesterol induces no significant change. The observations suggest the formation of a lipid polymer membrane resultant from the interaction, predominantly electrostatic, of the isolated components. The implications of these results are discussed in terms of the current models of membrane structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applequist, J., Doty, P. 1962. α-helix formation in poly ε-carbobenzoxy-L-lysine and polylysine.In: Polyaminoacids, Polypeptides and Proteins. M. A. Stahmann, editor. p. 161. The University of Wisconsin Press, Madison, Wisconsin.

    Google Scholar 

  • Bangham, A. D. 1963. Physical structure and behaviour of lipids and lipid enzymes.In: Advances in Lipid Research. R. Paoletti and D. Kritchevsky, editors. Vol. 1, p. 65. Academic Press Inc., N.Y.

    Google Scholar 

  • Bangham, A. D. 1968. Membrane models with phospholipids.In: Progress in Biophysics and Molecular Biology. J. A. V. Butler and D. Noble, editors. Vol. 18, p. 29. Pergamon Press, N.Y.

    Google Scholar 

  • Bangham, A. D., Horne, R. W. 1964. Negative staining of phospholipids and their structural modification by surface-active agents, as observed in the electron microscope.J. Mol. Biol. 8:660.

    Google Scholar 

  • Bangham, A. D., Standish, M. M., Watkins, J. C. 1965. Diffusion of univalent ions across the lamella swollen phospholipids.J. Mol. Biol. 13:238.

    PubMed  Google Scholar 

  • Barfort, P., Arquilla, E. R., Vogelhust, P. O. 1968. Resistance changes in lipid bilayers: immunological applications.Science 160:1119.

    PubMed  Google Scholar 

  • Bradburry, E. M., Crane-Robinson, C., Goldman, H., Rattle, H. W. E. 1968. Proton magnetic resonance and optical spectroscopic studies of water soluble polypeptides: poly-L-lysine HBr, poly(L-glutamic acid), and copoly (L-glutamic acid42, L-lysine HBr28, L-alanine30).Biopolymers. 6:851.

    PubMed  Google Scholar 

  • Bungenberg de Jong, H. G. 1949. Complex colloid systems.In: Colloid Science, H. R. Kruyt, editor. Vol. 2, p. 335. Elsevier Publishing Co. Inc., N. Y., Amsterdam, London, Brussels.

    Google Scholar 

  • Danielli, J. F., Davson, H. 1935. A contribution to the theory of permeability of thin films.J. Cell Physiol. 5:495.

    Google Scholar 

  • Danielli, J. F., Harvey, E. N. 1935. The tension at the surface of mackerel egg oil, with remarks on the nature of the cell surface.J. Cell Physiol. 5:483.

    Google Scholar 

  • Das, M. L., Crane, F. L. 1964. Proteolipids I. The formation of phospholipid cytochromec complexes.Biochemistry 3:696.

    Google Scholar 

  • Davies, J. T., Rideal, E. K. 1961. Interfacial Phenomena. Chap. 2. Academic Press Inc., London.

    Google Scholar 

  • Doty, P., Imahori, K., Klemperer, E. 1958. The solution properties and configurations of a polyampholytic polypeptide: Copoly-L-lysine-L-glutamic acid.Proc. Nat. Acad. Sci. 44:424.

    Google Scholar 

  • Finkelstein, A., Cass, A. 1968. Permeability and electrical properties of thin lipid membranes.J. Gen. Physiol. 52(1, pt. 2):145s.

    Google Scholar 

  • Glaser, M., Simpkins, H., Singer, S. J., Sheetz, M., Chan, S. I. 1970. On the interactions of lipids and protein in the red blood cell membrane.Proc. Nat. Acad. Sci. 65:721.

    PubMed  Google Scholar 

  • Gorter, E., Grendel, F. 1925. On bimolecular layers of lipoids on the chromocytes of the blood.J. Exp. Med. 41:439.

    Google Scholar 

  • Green, D. E., Allmam, D. W., Bachmann, E., Baum, H., Kopaczyk, K., Korman, E. F., Lipton, S., Mac Lennan, D. H., McConnell, D. G., Purdue, J. F., Rieske, J. S., Tzagoloff, A. 1967. Formation of membranes by repeating units.Arch. Biochem. Biophys. 119:312.

    PubMed  Google Scholar 

  • Green, D. E., Purdue, J. F. 1966. Membranes as expressions of repeating units.Proc. Nat. Acad. Sci. 55:1295.

    PubMed  Google Scholar 

  • Gulick-Krzywicki, T., Schechter, E., Luzzati, V., Faure, M. 1969. Interactions of proteins and lipids: Structure and polymorphism of protein-lipid-water phases.Nature 223:1116.

    PubMed  Google Scholar 

  • Hammes, G. G., Schullery, S. E. 1970. Structure of macromolecular aggregates. II. Construction of model membranes from phospholipids and polypeptides.Biochemistry 9:2555.

    PubMed  Google Scholar 

  • Hopfer, U., Lehninger, A.L., Lennarz, W. 1970a. The effect of the polar moiety of lipids on the ion permeability of bilayer membranes.J. Membrane Biol. 2:41.

    Google Scholar 

  • Hopfer, U., Lehninger, A. L., Lennarz, W. 1970b. The effect of the polar moiety of lipids on bilayer conductance induced by uncouplers of oxidative phosphorylation.J. Membrane Biol. 3:142.

    Google Scholar 

  • Hopfer, U., Lehninger, A. L., Thompson, T. E. 1968. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation.Proc. Nat. Acad. Sci. 59:484.

    PubMed  Google Scholar 

  • Huang, C. 1969. Studies on phosphatidylcholine vesicles. Formation and physical characteristics.Biochemistry 8:344.

    PubMed  Google Scholar 

  • Jain, M. K., Strickholm, A., Cordes, E. H. 1969. Reconstitution of an ATP-mediated active transport system across black lipid membranes.Nature 222:871.

    PubMed  Google Scholar 

  • Katchalsky, E., Sela, M., Silman, H. I., Berger, A. 1964. Polyaminoacids as protein models.In: The Proteins. Composition, Structure and Function. H. Neurath, editor. Vol. 2, p. 406. Academic Press Inc., N. Y.

    Google Scholar 

  • Kimelberg, H. K., Papahadjopoulos, D. 1971a. Phospholipid-protein interactions: Membrane permeability correlated with monolayer “penetration”.Biochim. Biophys. Acta 233:805.

    PubMed  Google Scholar 

  • Kimelberg, H. K., Papahadjopoulos, D. 1971b. Interactions of basic proteins with phospholipid membranes. Binding and changes in the sodium permeability of phosphatidylserine vesicles.J. Biol. Chem. 246:1142.

    PubMed  Google Scholar 

  • Korn, E. D. 1966. Structure of biological membranes: The unit membrane theory is reevaluated in light of the data now available.Science 153:1491.

    PubMed  Google Scholar 

  • Lawrence, A. S. C. 1961. A new type of interfacial interaction.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 35. Czechoslovak Academy of Sciences, Prague.

    Google Scholar 

  • Lenard, J., Singer, S. J. 1966. Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism.Proc. Nat. Acad. Sci. 56:1828.

    Google Scholar 

  • Luzzati, V., Husson, F. 1962. The structure of the liquid crystalline phases of lipidwater systems.J. Cell Biol. 12:207.

    PubMed  Google Scholar 

  • Mac Innes, D. A. 1961. The Principles of Electrochemistry. Chap. 13. Dover Publications, Inc., New York.

    Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G., Ciani, S. 1970. Surface charge and the conductance of phospholipid membranes.Proc. Nat. Acad. Sci. 67:1268.

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D. O. 1963. Induced excitability in reconstituted cell membrane structure.J. Theoret. Biol. 4:268.

    Google Scholar 

  • Mueller, P., Rudin, D. O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398.

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D. O. 1968. Action potentials induced in bimolecular lipid membranes.Nature 217:713.

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D. O. 1969a. Bimolecular lipid membranes: Techniques of formation, study of electrical properties and induction of ionic gating phenomena.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stampfli, editors. p. 141. Springer-Verlag, Berlin, Heidelberg, N. Y.

    Google Scholar 

  • Mueller, P., Rudin, D. O. 1969b. Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.In: Current Topics in Bioenergetics. D. R. Sanadi, editor. Vol. 3, p. 157. Academic Press Inc., N. Y.

    Google Scholar 

  • Mueller, P., Rudin, D. O., Tien, H. T., Wescott, W. C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system.Nature 194:979.

    PubMed  Google Scholar 

  • Mysels, K. J., Shinoda, K., Frankel, S. 1959. Soap Films: Study of Their Thinning. Pergamon Press Inc., N. Y.

    Google Scholar 

  • Ohki, S., Aono, O. 1970. Phospholipid bilayer-micelle transformation.J. Colloid Interface Sci. 32:270.

    PubMed  Google Scholar 

  • Redwood, W. R., Muldner, H., Thompson, T. E. 1969. Interaction of a bacterial adenosine-triphosphatase with phospholipid bilayers.Proc. Nat. Acad. Sci. 64:989.

    PubMed  Google Scholar 

  • Ryser, H. J. P. 1968. Uptake of protein by mammalian cells: An underdeveloped area.Science 159:390.

    PubMed  Google Scholar 

  • Seufert, W. D. 1965. Induced permeability changes in reconstituted cell membrane structure.Nature 207:174.

    PubMed  Google Scholar 

  • Shah, D. O. 1969. Lipid-protein interactions in monolayers. Effect of conformation of poly-L-lysine on stearic acid monolayers.Biochim. Biophys. Acta 193:217.

    PubMed  Google Scholar 

  • Shah, D. O. 1970. Lipid-polymer interactions in monolayers: Effect of conformation of poly-L-lysine on stearic acid monolayers.In: Surface Chemistry of Biological Systems. M. Blank, editor. p. 101. Plenum Press, N. Y.

    Google Scholar 

  • Shashoua, V. E. 1969. Electrically active protein and polynucleic acid membranes.In: The Molecular Basis of Membrane Function. D. C. Tosteson, editor. p. 147. Prentice-Hall, Inc., Englewood Cliffs, N. J.

    Google Scholar 

  • Skulachev, V. P., Sharaf, A. A., Liberman, E. A. 1967. Proton conductors in the respiratory chain and artificial membranes.Nature 216:718.

    PubMed  Google Scholar 

  • Sollner, K. 1969. The electrochemistry of porous membranes, with particular reference to ion exchange membranes and their use in model studies of biophysical interest.J. Macromol. Sci. Chem. A 3(1):1.

    Google Scholar 

  • Ter Minassian-Saraga, L., Wietzerbin, J. 1970. The action of hexadecyl-trimethylammonium bromide on bilayer lipid membranes.Biochem. Biophys. Res. Commun. 41:1231.

    PubMed  Google Scholar 

  • Thompson, T. E., Henn, F. A. 1970. Experimental phospholipid model membranes.In: Membranes of Mitochondria and Chloroplasts. E. Racker, editor. p. 1. ACS Monograph 165. Van Nostrand Reinhold Co., N. Y.

    Google Scholar 

  • Tien, H. T. 1970. The effect of modifiers on the intrinsic properties of bilayer lipid membranes (BLM).In: Surface Chemistry of Biological Systems. M. Blank, editor. p. 135. Plenum Press, N. Y.

    Google Scholar 

  • Tien, H. T., Carbone, S., Dawidowicz, E. A. 1966. Formation of “black” lipid membranes by oxidation products of cholesterol.Nature 212:718.

    Google Scholar 

  • Tien, H. T., Diana, A. L. 1967a. Some physical properties of bimolecular lipid membranes produced from new lipid solutions.Nature 215:1199.

    PubMed  Google Scholar 

  • Tien, H. T., Diana, A. L. 1967b. Black lipid membranes in aqueous media: The effect of salts on electrical properties.J. Colloid Interface Sci. 24:287.

    PubMed  Google Scholar 

  • Ulmer, D. D., Vallee, B. L., Gorchein, A., Neuberger, A. 1965. Optical rotatory dispersion of cytochromec phospholipid complexes.Nature 206:825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montal, M. Lipid-polypeptide interactions in bilayer lipid membranes. J. Membrain Biol. 7, 245–266 (1972). https://doi.org/10.1007/BF01867918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01867918

Keywords

Navigation