Skip to main content
Log in

Expression and localization of inhibin/activin subunits and activin receptors in MCF-7 cells, a human breast cancer cell line

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Inhibins and activins are members of the transforming growth factor-β (TGFβ) superfamily. Since TGFβ has been shown to be a potent proliferation-inhibiting agent for the breast cancer cell line MCF-7, we determined whether this cell line (a) transcribes messenger RNAs coding inhibin/activin α-, βA-, and βB-subunits and activin receptors, and (b) produces inhibin and/or activin proteins. Messenger RNAs for α- and β-subunits of inhibin/activin and activin receptor II in MCF-7 cells were detected and localized using the reverse transcription-polymerase chain reaction (RT-PCR) analysis andin situ hybridization, respectively. The identity of the RT-PCR products was confirmed by DNA sequencing of PCR products. Immunocytochemically, inhibin and activin were localized in these cells. Our findings that messenger RNAs encoding inhibin α-subunit, inhibin/activin βA-subunit, and activin receptor II were expressed, and inhibin/activin proteins were produced by MCF-7 cells, imply that these gonadal growth factors may have paracrine/autocrine functions in human breast cancer. Further, these observations suggest that these growth factors may be involved in regulating the growth and differentiation of human breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ying SY: Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endo Rev 9: 267–293, 1988

    Google Scholar 

  2. Mason AJ, Hayflick JS, Ling N, Esch F, Ueno N, Ying S-Y, Guillemin R, Niall H, Seeburg PH: Ovarian follicular fluid inhibin: Complementary DNA sequences show precursor structure and homology with transforming growth factorbeta. Nature 318: 659–663, 1985

    PubMed  Google Scholar 

  3. Ling N, Ying S-Y, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R: Pituitary FSH is released by a heterodimer of the β-subunits from the two forms of inhibin. Nature 321: 779–782, 1986

    PubMed  Google Scholar 

  4. Vale WW, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J: Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 321: 776–779, 1986

    PubMed  Google Scholar 

  5. Ling N, Ying S-Y, Ueno N, Esch F, Denoroy L, Guillemin R: Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc Natl Acad Sci USA 82: 7217–7221, 1985

    PubMed  Google Scholar 

  6. Mason AJ, Niall HD, Seeburg PH: Structure of two human ovarian inhibins. Biochem Biophys Res Commun 137: 957–964, 1986

    PubMed  Google Scholar 

  7. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV: Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701–705, 1985

    PubMed  Google Scholar 

  8. Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, Ninfa EG, Frey NM, Gash DJ, Chow EP, Fisher RA, Bertonis JM, Torres G, Wallner BP, Ramachandran KL, Ragin RC, Manganaro TF, MacLaughlin DT, Donahoe PK: Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the gene in animal cells. Cell 45: 686–694, 1986

    Google Scholar 

  9. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA: Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534, 1988

    PubMed  Google Scholar 

  10. Weeks DL, Melton DA: A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-β. Cell 51: 861–867, 1987

    PubMed  Google Scholar 

  11. Padgett RW, St Johnston D, Gelbert WM: A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-β family. Nature 325: 81–84, 1987

    PubMed  Google Scholar 

  12. Eto Y, Tsiji T, Takegawa M, Takano S, Yakagawa Y, Shibai H: Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Commun 42: 1095–1103, 1987

    Google Scholar 

  13. Schubert D, Kimura H, LaCorbiere M, Vaughan J, Karr D, Fischer WH: Activin is a nerve cell survival molecule. Nature 344: 868–870, 1990

    PubMed  Google Scholar 

  14. Scher W, Eto Y, Ejima D, Den T, Svet-Moldavsky IA: Phorbol ester-treated human acute myeloid leukemia cells secrete G-CSF, GM-CSF and erythroid differentiation factor into serum-free media in primary culture. Biochim Biophys Acta 1055: 278–286, 1990

    PubMed  Google Scholar 

  15. Fujimoto K, Kawakita M, Kato K, Yonemura Y, Masuda T, Matsuzaki H, Hirose J, Isaji M, Sasaki H, Inoue Tet al.: Purification of megakaryocyte differentiation activity from a human fibrous histiocytoma cell line: N-terminal sequence homology with activin-A. Biochem Biophys Res Commun 174: 1163–1168, 1991

    PubMed  Google Scholar 

  16. Lee W, Mason AJ, Schwall R, Szonyi E, Mather JP: Secretion of activin by interstitial cells in the testis. Science 243: 396–398, 1989

    PubMed  Google Scholar 

  17. Ying SY, Becker A, Ling N, Ueno N, Guillemin R: Inhibin and beta type transforming growth factor (TGFβ) have opposite modulating effects on the follicle stimulating hormone (FSH)-induced aromatase activity of cultured rat granulosa cells. Biochem Biophys Res Commun 136: 969–975, 1986

    PubMed  Google Scholar 

  18. Hutchinson LA, Findlay JR, de Vos FL, Robertson DM: Effects of bovine inhibin, transforming growth factor β and bovine activin-A on granulosa cell differentiation. Biochem Biophys Res Commun 146: 1405–1412, 1987

    PubMed  Google Scholar 

  19. LaPolt PS, Soto D, Su J-G, Campen CA, Vaughan J, Vale W, Hsueh AJW: Activin stimulation of inhibin secretion and messenger RNA levels in cultured granulosa cells. Mol Endocrinol 3: 1666–1673, 1989

    PubMed  Google Scholar 

  20. Gozalez-Manchon C, Vale W: Activin-A, inhibin and transforming growth factor-β modulate growth of two gonadal cell lines. Endocrinology 125: 1666–1672, 1989

    PubMed  Google Scholar 

  21. Slack J: Embryology. Molecule of the moment [news]. Nature 349: 17–18, 1991

    PubMed  Google Scholar 

  22. Matzuk MM, Finegold MJ, Su J-G, Hsueh AJW, Bradley A: β-inhibin is a tumor-suppressor gene with gonadal specificity in mice. Nature 360: 313–319, 1992

    PubMed  Google Scholar 

  23. Bilous M, Milliken J, Mathijs JM: Immunocytochemistry andin situ hybridisation of epidermal growth factor receptor and relation to prognostic factors in breast cancer. Europ J Cancer 28A: 1033–1037, 1992

    Google Scholar 

  24. Peyrat JP, Bonneterre J, Boily B, Demaille A: Basic fibroblast growth factor (bFGF): mitogenic activity and binding sites in human breast cancer. J Steroid Biochem Molec Biol 43: 87–94, 1992

    PubMed  Google Scholar 

  25. Rosen N, Yee D, Lippman ME, Paik S, Cullen KJ: Insulinlike growth factors in human breast cancer. Breast Cancer Res Treat 18 suppl 1: s55-s62, 1991

    Google Scholar 

  26. Leung BS, Stout L, Zhou L, Ji HJ, Zhang QQ, Leung HT: Evidence of an EGF/TGFα-independent pathway for estrogen-regulated cell proliferation. J Cell Biochem 46: 123–133, 1991

    Google Scholar 

  27. Croxtall JD, Jamil A, Aayud M, Colletta AA, White JO: TGFβ stimulation of endometrial and breast-cancer cell growth. Int J Cancer 50: 822–827, 1992

    PubMed  Google Scholar 

  28. Massague J: Epidermal growth factor-like transforming growth factor. J Biol Chem 258: 13606–13613, 1983

    PubMed  Google Scholar 

  29. Daniel CW, Silberstein GB: Postnatal development of the rodent mammary gland. In: Neville MC, Daniel CW (eds) The Mammary Gland: Development, Regulation, and Function. Plenum Press, New York, pp 3–36, 1987

    Google Scholar 

  30. Silberstein GB, Daniel CW: Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237: 291–293, 1987

    PubMed  Google Scholar 

  31. Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S: TGFβ1-induced inhibition of mouse mammary ductal growth: Development specificity and characterization. Dev Biol 135: 20–30, 1989

    PubMed  Google Scholar 

  32. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW: Regulated expression and growth inhibitory effects of transforming growth factor-β isoforms in mouse mammary gland development. Development 113: 867–878, 1991

    PubMed  Google Scholar 

  33. McCune BK, Mullin BR, Flanders KC, Jaffurs WJ, Mullen LT, Sporn MB: Localization of transforming growth factor-β isotypes in lesions of the human breast. Hum Pathol 23: 13–20, 1991

    Google Scholar 

  34. Flanders KC, Thompson NL, Cissel DS, Van Obberghen-Schilling E, Baker CC, Kass ME, Ellingsworth LR, Roberts AB, Sporn MB: Transforming growth factor-β1: Histochemical localization with antibodies to different epitopes. J Cell Biol 108: 653–660, 1989

    PubMed  Google Scholar 

  35. Mizukami Y, Nonomura A, Yamada T, Kurumaya H, Hayashi M, Koyasaki N, Taniya T, Noguchi M, Nakamura S, Matsubara F: Immunohistochemical demonstration of growth factors, TGFα, TGF-β, IGF-I and neu oncogene product in benign and malignant human breast tissues. Anticancer Res 10: 1115–1126, 1990

    PubMed  Google Scholar 

  36. Travers MT, Barrett-Lee PJ, Berger U, Luqmani YA, Gazet J-C, Powles TJ, Coombes RC: Growth factor expression in normal, benign, and malignant breast tissue. Br Med J 296: 1621–1624, 1988

    Google Scholar 

  37. Zajchowski D, Band V, Pauzie N, Tager A, Stampfer M, Sager R: Expression of growth factors and oncogenes in normal and tumor-derived human mammary epithelial cells. Cancer Res 48: 7041–7047, 1988

    PubMed  Google Scholar 

  38. Wakefield LM, Colletta AA, McCune BK, Sporn MB: Roles for transforming growth factors-β in the genesis, prevention, and treatment of breast cancer. Cancer Treatment Res 61: 97–136, 1992

    Google Scholar 

  39. Zhang Z, Ying SY: Expression of activins and activin receptors in human retinoblastoma cell line Y-79. IOVS (submitted), 1994

  40. Mason AJ, Niall HD, Seeburg PH: Structure of two human ovarian inhibins. Biochem Biophys Res Commun 135: 957–964, 1986

    PubMed  Google Scholar 

  41. Matsuzaki K, Xu J, Wang Fet al.: A widely expressed transmembrane serine/threonine kinase that does not bind activin, inhibin, transforming growth factor β, or bone morphogenic factor. J Biol Chem 268: 12719–12723, 1993

    PubMed  Google Scholar 

  42. Donaldson CJ, Mathews LS, Vale WW: Molecule cloning and binding properties of the human type II activin receptor. Biochem Biophys Res Commun 184: 310–316, 1992

    PubMed  Google Scholar 

  43. Hilden K, Tuuri T, Eramaa M, Ritvos O: Expression of type II activin receptor genes during differentiation of human K562 cells and cDNA cloning of the human type II B activin receptor. Blood 83: 2163–2170, 1994

    PubMed  Google Scholar 

  44. Barnard GF, Puder M, Begum NA, Chen LB: PCR product sequencing with [A-33P] and [A-32P]dATP. Biotechniques 16: 572–573, 1994

    PubMed  Google Scholar 

  45. Ying SY, Ling N, Guillemin R: Inhibins and activins. Ann N Y Acad Sci 541: 143–152, 1988

    PubMed  Google Scholar 

  46. Meunier H, Cajander SB, Roberts VJ, River C, Sawchenko PE, Hsueh AJW, Vale W: Rapid changes in the expression of inhibin α, βA-, and βB-subunits in ovarian cell types during the rat estrous cycle. Mol Endocrinol 2: 1352–1363, 1988

    PubMed  Google Scholar 

  47. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Mather JO, Attie KM, Woodruff TK, Rice GC, Phillips DM: Activin stimulates spermatogonial proliferation in germ-cell cocultures from immature rat testis. Endocrinology 127: 3206–3214, 1990

    PubMed  Google Scholar 

  48. Kaipia A, Paevinen M, Toppari J: Localization of activin receptor (ActR-IIB2) mRNA in the rat seminiferous epithelium. Endocrinology 132: 477–479, 1993

    PubMed  Google Scholar 

  49. Shikone T, Matzuk MM, Perlas E, Finegold MJ, Lewis KA, Vale W, Bradley A, Hsueh AJW: Characterization of gonadal sex cord-stromal tumor cell lines from inhibin-α and p53-deficient mice: The role of activin as an autocrine growth factor. Mol Endocr 8: 983–995, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, SY., Zhang, Z. Expression and localization of inhibin/activin subunits and activin receptors in MCF-7 cells, a human breast cancer cell line. Breast Cancer Res Tr 37, 151–160 (1996). https://doi.org/10.1007/BF01806496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806496

Key words

Navigation