Skip to main content

Advertisement

Log in

Role of tyrosine kinases in lymphocyte activation: Targets for drug intervention

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Recent developments in our understanding of lymphocyte receptor-associated signalling events have offered many new potential targets for modifying antigen and cytokine receptor signalling events in immune-related diseases such as allergy, autoimmunity and transplant rejection. As discussed below, these targets are largely tissue-restricted and are functionally confined to a limited set of receptors. Therefore, it is anticipated that selective inhibitors of these signalling events would offer safe and effective therapies for immunologically-based diseases. First, we review T and B cell antigen receptor signalling as targets for inhibiting lymphocyte responses. Second, targets in lymphocyte cytokine receptor signalling pathways are discussed. Finally, we review strategies for inhibition of receptor signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T cell clones. Nature 1992;356:607–9.

    Google Scholar 

  2. Amrein KE, Sefton BM. Mutation of a site of tyrosine phosphorylation in the lymphocyte-specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts. Proc Natl Acad Sci USA 1988;85:4247–51.

    Google Scholar 

  3. Cantley LC, Auger KR, Carpenter C, et al. Oncogenes and signal transduction. Cell 1991;64:281–302.

    Google Scholar 

  4. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988;241:42–52.

    Google Scholar 

  5. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interaction of cytoplasmic signaling molecules. Science 1991;252:668–74.

    Google Scholar 

  6. Marth JD, Peet R, Krebs EG, Perlmutter RM. A lymphocyte-specific protein-tyrosine kinase is rearranged and overexpressed in the murine T cell lymphoma line LSTRA. Cell 1985;43:393–404.

    Google Scholar 

  7. Rudd CE, Janssen O, Cai Y-C, da Silva AJ, Raab M, Prasad KVS. Two-step TCRζ/CD3-CD4 and CD28 signaling in T cell: SH2/SH3 domains, protein-tyrosine and lipid kinases. Immunol Today 1994;15:225–34.

    Google Scholar 

  8. Songyang Z, Shoelson SE, Chaudhuri M, et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767–78.

    Google Scholar 

  9. Perlmutter RM, Marth JD, Ziegler SF, et al. Specialized protein tyrosine kinase proto-oncogenes in hematopoietic cells. Biochem Biophys Acta 1988;948:25–62.

    Google Scholar 

  10. Turner JM, Brodsky MH, Irving BA, Levin SD, Perlmutter RM, Littman DR. Interaction of the unique N-terminal region of tyrosine kinase p56lck with the cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 1990;60:755–65.

    Google Scholar 

  11. Shaw AS, Chalupny J, Whitney JA, et al. Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56lck tyrosine protein kinase. Mol Cell Biol 1990;10:1853–62.

    Google Scholar 

  12. Shaw AS, Amrein KE, Hammond C, Stern DF, Sefton BM, Rose JK. Thelck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. Cell 1989;59:627–36.

    Google Scholar 

  13. Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL, Scholssman SF. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc Natl Acad Sci USA 1988;85:5190–4.

    Google Scholar 

  14. Veillette G, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine kinase p56lck. Cell 1988;1988:301–8.

    Google Scholar 

  15. Glaichenhaus N, Shastri N, Littman DR, Turner JM. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 1991;64:511–20.

    Google Scholar 

  16. Zamoyska R, Derham P, Gorman SD, et al. Inability of CD8α polypeptides to associate with p56lck correlates with impaired functionin vitro and lack of expressionin vivo. Nature 1989;342:278–81.

    Google Scholar 

  17. Hatakeyama MT, Kono T, Kobayashi N, et al. Interaction of the IL-2 receptor with the src-family kinase p56lck: identification of a novel intermolecular association. Science 1991;252:1523.

    Google Scholar 

  18. Straus DB, Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 1992;70:585–93.

    Google Scholar 

  19. Levin SD, Anderson SJ, Forbush KA, Perlmutter RM. A dominant-negative transgene defines a role for p56lck in thymopoiesis. EMBO Journal 1993;12:1671–80.

    Google Scholar 

  20. Molina TJ, Kishihara K, Siderovski DP, et al. Profound block in thymocyte development in mice lacking p56lck. Nature 1992;357:161–4.

    Google Scholar 

  21. Molina TJ, Bachmann MF, Kundig TM, Zinkernagel RM, Mak TW. Peripheral T cells in mice lacking p56lck do not express significant antiviral effector functions. J Immunol 1993;151:699–706.

    Google Scholar 

  22. Chan AC, Iwashima M, Turck CW, Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TcR ζ chain. Cell 1992;71:649–62.

    Google Scholar 

  23. Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991;64:891.

    Google Scholar 

  24. Samelson LE, Phillips AF, Luong ET, Klausner RD. Association of the fyn protein-tyrosine kinase with T-cell antigen receptor. Proc Natl Acad Sci USA 1990;87:4358–62.

    Google Scholar 

  25. Tsygankov AY, Broker BM, Fargnoli J, Ledbetter JA, Bolen JB. Activation of tyrosine kinase p60fyn following T cell antigen receptor cross-linking. J Biol Chem 1992;267:18259–62.

    Google Scholar 

  26. Takeuchi M, Kuramochi S, Fusaki N, et al. Functional and physical interaction of protein-tyrosine kinases Fyn and Csk in the T cell signalling system. J Biol Chem 1993;268:27413–9.

    Google Scholar 

  27. Sudol M, Greulich H, Newman L, Sarkar A, Sukegawa J, Yamamato T. A novel Yes-related kinase, Yrk, is expressed at elevated levels in neural and hematopoietic tissues. Oncogen 1993;8:823–31.

    Google Scholar 

  28. Cooke MP, Perlmutter RM. Expression of a novel form of the fyn proto-oncogene in hemopoietic cells. New Biol 1989;1:66–74.

    Google Scholar 

  29. Davidson D, Chow LML, Fournel M, Veillette A. Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn. J Exp Med 1992;175:1483–92.

    Google Scholar 

  30. Cooke MP, Abraham KM, Forbush KA, Perlmutter RM. Regulation of T cell receptor signaling by asrc family protein-tyrosine kinase (p59fyn). Cell 1991;65:281–91.

    Google Scholar 

  31. Appleby MW, Gross JA, Cooke MP, Levin SD, Qian X, Perlmutter RM. Defective T cell receptor signaling in mice lacking the thymic isoform of p59fyn. Cell 1992;70:751–63.

    Google Scholar 

  32. Stein PL, Lee HM, Rich S, Soriano P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 1992;70:741–50.

    Google Scholar 

  33. Chan AC, Irving BA, Fraser JD, Weiss A. The ζ chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc Natl Acad Sci USA 1991;88:9166–70.

    Google Scholar 

  34. Chan AC, van Oers NSC, Tran A, et al. Differential expression of ZAP-70 and syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TcR signaling. J Immunol 1994;152:4758–66.

    Google Scholar 

  35. Chan AC, Kadlecek TA, Elder ME, et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 1994;264:1599–601.

    Google Scholar 

  36. Chan AC, van Oers NSC, Tran A, et al. Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TcR signaling. J Immunol 1994;152:4758–66.

    Google Scholar 

  37. Couture C, Baier G, Altman A, Mustelin T. p56lck-independent activation and tyrosine phosphorylation of p72syk by T-cell antigen receptor/CD3 stimulation. Proc Natl Acad Sci USA 1994;91:5301–5.

    Google Scholar 

  38. Elder ME, Lin D, Clever J, et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 1994;264:1596–9.

    Google Scholar 

  39. Kolanus W, Romeo C, Seed B. T cell activation by clustered tyrosine kinases. Cell 1993;74:171–83.

    Google Scholar 

  40. Iwashima M, Irving BA, van Oers NSC, Chan AC, Weiss A. Sequential interactions of the TcR with two distinct cytoplasmic tyrosine kinases. Science 1994;263:1136–9.

    Google Scholar 

  41. Monafo WJ, Polmar SH, Neudorf S, Mather A, Filipovich AH. A hereditary immunodeficiency characterized by CD8+ lymphocyte deficiency and impaired lymphocyte activation. Clin Exp Immunol 1992;90:390–3.

    Google Scholar 

  42. Straus DB, Weiss A. The CD3 chains of the T cell antigen receptor associate with the ZAP-70 tyrosine kinase and are tyrosine phosphorylated after receptor stimulation. J Exp Med 1993;178:1523–30.

    Google Scholar 

  43. Wange RL, Kong A-NT, Samelson LE. A tyrosine-phosphorylated 70-kDa protein binds a photoaffinity analogue of ATP and associates with both the ζ chain and CD3 components of the activated T cell antigen receptor. J Biol Chem 1992;267:11685–8.

    Google Scholar 

  44. Taniguchi T, Kobayashi T, Kondo J, et al. Molecular cloning of a porcine gene Syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem 1991;266:15790–6.

    Google Scholar 

  45. Irving BA, Chan AC, Weiss A. Functional characterization of a signal transducing motif present in the T cell antigen receptor ζ chain. J Exp Med 1993;177:1093.

    Google Scholar 

  46. Romeo C, Amiot M, Seed B. Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor ζ chain. Cell 1992;68:889–97.

    Google Scholar 

  47. van Oers NSC, Killeen N, Weiss A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR ζ in murine thymocytes and lymph node T cells. Immunity 1994;1:675–85.

    Google Scholar 

  48. Arpaia E, Shahar M, Dadi H, Cohen A, Rolfman CM. Defective receptor signaling and CD8+ thymic selection in humans lacking Zap-70 kinase. Cell 1994;76:947–58.

    Google Scholar 

  49. Linsley PS, Clark EA, Ledbetter JA. The T cell antigen. CD28, mediates adhesion with B cells by interacting with the activation antigen, B7/BB-1. Proc Natl Acad Sci USA 1990;87:5031.

    Google Scholar 

  50. Linsley PS, Ledbetter JA. The role of CD28 receptor during T cell responses to antigen. Ann Rev Immunol 1993;11:191–212.

    Google Scholar 

  51. Freeman GJ, Gribben JG, Boussiotis VA, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 1993;262:909–11.

    Google Scholar 

  52. Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P, Hodes RJ. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 1993;262:905–7.

    Google Scholar 

  53. Azuma M, Ito D, Yagita H, et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 1993;366:76–9.

    Google Scholar 

  54. June CH, Ledbetter JA, Linsley PS, Thompson CB. Role of the CD28 receptor in T-cell activation. Imunol Today 1990;11:211–6.

    Google Scholar 

  55. Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992;257:789–92.

    Google Scholar 

  56. Lin H, Bolling SF, Linsley PS, et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J Exp Med 1993;178:1801–6.

    Google Scholar 

  57. Allison JP. CD28-B7 interactions in T-cell activation. Curr Opin Immunol 1994;6:414–9.

    Google Scholar 

  58. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, DuPont B. CD28 is associated with an induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Sci USA 1994;91:9347–51.

    Google Scholar 

  59. Ward SG, Westwick J, Hall ND, Sansom DM. Ligation of CD28 receptor by B7 induces formation of D-3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation. Eur J Immunol 1993;23:2527–77.

    Google Scholar 

  60. Huang M, Indik Z, Brass LF, Hoxie JA, Schreiber AD, Brugge JS. Activation of FcγRII induces tyrosine phosphorylation of multiple proteins including. FcγRII. J Biol Chem 1992;267:5467–73.

    Google Scholar 

  61. Nunes J, Klasen S, Franco M-D, et al. Signalling through CD28 T-cell activation pathway involves an inositol phospholipid-specific phospholipase C activity. Biochem J 1993;293:835–42.

    Google Scholar 

  62. Lu Y, Granelli-Piperno A, Bjorndahl JM, Phillips CA, Trevillyan JM. CD28-induced T cell activation: evidence for a protein-tyrosine kinase signal transduction pathway. J Immunol 1992;149:24–9.

    Google Scholar 

  63. Atluru S, Atlura D. Evidence that genistein, a protein-tyrosine kinase inhibitor inhibits CD28 monoclonal-antibody-stimulated human T cell proliferation. Transplant 1991;51:448–50.

    Google Scholar 

  64. Mano H, Ishikawa F, Nishida J, Hirai H, Takaku F. A novel protein-tyrosine kinse, tec, is preferentially expressed in liver. Oncogene 1990;5:1781–6.

    Google Scholar 

  65. Siliciano JD, Morrow TA, Desiderio SV.itk: a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 1992;89:11194–8.

    Google Scholar 

  66. Vetrie D, Vorechovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993;361:226–33.

    Google Scholar 

  67. Yamada N, Kawakami Y, Kimura H, et al. Structure and expression of novel protein-tyrosine kinases, Emb and Emt, in hematopoietic cells. Biochem Biophys Res Comm 1993;192.

  68. Cooper JA, Howell B. The when and how of src regulation. Cell 1993;73:1051–4.

    Google Scholar 

  69. Veillette A, Abraham N, Caron L, Davidson D. Seminars in Immunology 1991;3:143–52.

    Google Scholar 

  70. Okada M, Nada S, Yamanashi Y, Yamamoto T, Nakagawa H. CSK: a protein-tyrosine kinase involved in regulation ofsrc family kinases. J Biol Chem 1991;266:24249–52.

    Google Scholar 

  71. Okada M, Nakagawa H. A protein tyrosine kinase involved in regulation of pp60c—src function. J Biol Chem 1989;264:20886–93.

    Google Scholar 

  72. Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c—src. Nature 1991;351:69–72.

    Google Scholar 

  73. Partanen J, Armstrong E, Berman M, et al. cyl encodes a putative cytoplasmic tyrosine kinase lacking the conserved tyrosine autophosphorylation site (Y416src). Oncogene 1991;6:2013–8.

    Google Scholar 

  74. Sabe H, Knudsen B, Okada M, Nada S, Nakagawa H, Hanafusa H. Moleculear cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein. Proc Natl Acad Sci USA 1992;89:2190–4.

    Google Scholar 

  75. Bergman M, Mustelin T, Oetken C, et al. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO Journal 1992;11:2919–24.

    Google Scholar 

  76. Chow LML, Fournel M, Davidson D, Veillette A. Negative regulation of T-cell receptor signalling by tyrosine kinase p50csk. Nature 1993;365:156–60.

    Google Scholar 

  77. Imamoto A, Soriano P. Disruption of thecsk gene, encoding a negative regulator of src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 1993;73:1117–24.

    Google Scholar 

  78. Nada S, Yagi T, Takeda H, et al. Constitutive activation of src family kinases in mouse embryos that lack csk. Cell 1993;73:1125–35.

    Google Scholar 

  79. Gross JA, Appleby MW, Chien S, et al. Control of lymphopoiesis by p50csk, a regulatory protein tyrosine kinase. J Exp Med 1995;181:463–73.

    Google Scholar 

  80. Klages S, Adam D, Class K, Fargnoli J, Bolen JB, Panhallow RC. Proc Natl Acad Sci USA 1994. In press.

  81. Bennett BD, Cowley S, Jiang S, et al. Identification and characterization of a novel tyrosine kinsae from megakaryocytes. J Biol Chem 1994;269:1068–74.

    Google Scholar 

  82. Chow LML, Jarvis C, Hu Q, et al. Ntk: A csk-related protein-tyrosine kinase expressed in brain and T lymphocytes. Proc Natl Acad Sci USA 1994;91:4975–9.

    Google Scholar 

  83. Rosata A, Zambon A, Mandruzzato S, et al. Inhibition of protein tyrosine phosphorylation prevents T-cell-mediated cytotoxicity. Cell Immunol 1994;159:294–305.

    Google Scholar 

  84. Odum N, Kanner SB, Ledbetter JA, Svejgaard A. MHC class II molecules deliver costimulatory signals in human T cells through a functional linkage with IL-2-receptors. J Immunol 1993;150:5289–98.

    Google Scholar 

  85. O'Rourke AM, Mescher MF. Signals for activation of CD8-dependent adhesion and costimulation in CTLs. J Immunol 1994;152:4358–67.

    Google Scholar 

  86. Baldari CT, Telford JL. Dissection of T cell antigen receptor signaling using protein tyrosine kinase inhibitors. European J Immunol 1994;24:1046–52.

    Google Scholar 

  87. Letourneur F, Klausner RD. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3. Science 1992;255:79–82.

    Google Scholar 

  88. Wegener AMK, Letourneur F, Hoeveler A, Brocker T, Luton F, Malissen B. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell 1992;68:83–95.

    Google Scholar 

  89. Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsivenessin vitro andin vivo. J Exp Med 1987;165:302–19.

    Google Scholar 

  90. Quill H, Schwartz RH. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of long-lived state of proliferative nonresponsiveness. J Immunol 1987;138:3704.

    Google Scholar 

  91. Madrenas J, Wange RL, Wang JL, Isakov N, Samelson LE, Germain RN. z phosphorylation without ZAP-70 activation induced by TcR antagonists or partial agonists. Science 1995;267:515–8.

    Google Scholar 

  92. Sloan-Lancaster J, Shaw A, Rothbard JB, Allen PM. Partial T cell signaling: Altered phosph-ζ and lack of ZAP-70 recruitment in APL-induced T cell anergy. Cell 1995;9:913–22.

    Google Scholar 

  93. Reth M. Antigen receptors on B lymphocytes. Ann Rev Immunol 1992;10:97–121.

    Google Scholar 

  94. Sanchez M, Misuloin Z, Burkhardt A, et al. Signal transduction by Ig is mediated through Ig-alpha and Ig-beta. J Exp Med 1993;178:1049–57.

    Google Scholar 

  95. Williams G, Venkitaraman A, Gilmore D, Neuberger M. The sequence of the mu transmembrane segment determines the tissue specificity of the transport of immunoglobulin M to the cell surface. J Exp Med 1990;171:947–52.

    Google Scholar 

  96. Cambier J, Bedzyk W, Campbell K, et al. The B cell antigen receptor: structure and function of primary, secondary, tertiary and quartenary components. Immunol Rev 1992;132:1–22.

    Google Scholar 

  97. Weiss A. T-cell antigen receptor signal transduction—a tail of tails and cytoplasmic protein tyrosine kinases. Cell 1993;73:209–12.

    Google Scholar 

  98. Zhou L, Ord D, Hughes A, Tedder T. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol 1991;147:1424–32.

    Google Scholar 

  99. Carter R, Spycher M, Ny Y, Hoffman RDF. Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J Immunol 1988;141:457–63.

    Google Scholar 

  100. Matsumoto A, Kopicky-Burd J, Carter R, Tuveson D, Tedder T, Fearon D. Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J Exp Med 1991;173:55–64.

    Google Scholar 

  101. Bradbury L, Kansas G, Levy S, Evans R, Tedder T. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of anti-proliferative antibody and Leu-13 molecules. J Immunol 1992;149:2841–50.

    Google Scholar 

  102. Carter R, Tuveson D, Park D, Rhee S, Fearon D. The CD19 complex of B lymphocytes. Activation of phospholipase C by a protein tyrosine kinase-dependent pathway that can be enhanced by the membrane IgM complex. J Immunol 1991;147:3663–71.

    Google Scholar 

  103. Carter R, Fearon D. CD19: Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 1992;256:105–7.

    Google Scholar 

  104. Chalupny N, Kanner S, Schieven G, et al. Tyrosine phosphorylation of CD19 in pre-B and mature B cells. EMBO Journal 1993;12:2691–6.

    Google Scholar 

  105. Nakanishi H, Brewer K, Exton J. Activation of the zeta isozyme of protein kinse C by phosphatidylinositol-3,4,5-triphosphate. J Biol Chem 1993;268:13–6.

    Google Scholar 

  106. Kishihara K, Penninger J, Wallace V, et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 1993;74:143–56.

    Google Scholar 

  107. Lin J, Brown V, Justemen L. Regulation of basal tyrosine phosphorylation of the B cell antigen receptor complex by the protein tryosine phosphatase CD45. J Immunol 1992;149:3182–90.

    Google Scholar 

  108. DeFranco T. Structure and function of the B cell antigen receptor. Ann Rev Cell Biol 1993;9:377–410.

    Google Scholar 

  109. Pleiman C, Chien N, Cambier J. Point mutations define a mIgG transmembrane region motif which determines intersubunit signal transduction in the antigen receptor. J Immunol 1994;152:2837–44.

    Google Scholar 

  110. Pleiman C, Abrams C, Timson-Gauen D, et al. Distinct domains within p53/56-lyn and p59-fyn bind nonphosphorylated and phosphorylated Ig-alpha. Proc Natl Acad Sci USA 1994;91:4268–72.

    Google Scholar 

  111. Cambier J, Pleiman CMC. Signal transduction by the B cell antigen receptor and its co-receptors. Ann Rev Immunol 1994;12:457–83.

    Google Scholar 

  112. Pleiman C, Clark M, Winitz S, Coggeshall K, Johnson G, Cambier J. Mapping of sites on src-family protein tyrosine kinases p55-blk, p59-fyn, and p56-lyn which interact with effector molecules PLC-gamma2, MAP kinase, GAP, PI 3-kinase. Mol Cell Biol 1993;13:5877–87.

    Google Scholar 

  113. Hutchcroft JE, Harrison ML, Geahlen RE. Association of the 72-kda protein tyrosine kinase PTK72 with the B cell antigen receptor. J Biol Chem 1992;267:8613–9.

    Google Scholar 

  114. de Weers M, Brouns G, Hinshelwood S, et al. B-cell antigen receptor stimulation activates the human Bruton's tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem 1994;269:23857–60.

    Google Scholar 

  115. Tsukada S, Rawlings D, Witte O. Role of Bruton's tyrosine kinase in immunodeficiency. Current Opin Immunol 1994;6:623–30.

    Google Scholar 

  116. Tsukada S, Simon M, Whitte O, Katz A. Binding of betagamma subunits of heterodimeric G proteins to the PH domain of Bruton tyrosine kinase. Proc Natl Acad Sci USA 1994;91:11256–60.

    Google Scholar 

  117. Yao L, Kawakami Y, Kawakawi T. The pleckstrin homology domain of Burton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci USA 1994;91:9175–9.

    Google Scholar 

  118. Tamagnone L, Lahtinen I, Mustonen T, et al. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene 1994;9:3683–8.

    Google Scholar 

  119. Conley M. Molecular approaches to analysis of X-linked immunodeficiencies. Ann Rev Immunol 1992;10:215–38.

    Google Scholar 

  120. Uckun FM, Evans WE, Forsyth CJ, et al. Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 1995;267:886–91.

    Google Scholar 

  121. Schindler C, Darnell JE. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Ann Review Biochem 1995;64:621–51.

    Google Scholar 

  122. Taga T, Kishimoto T. Signaling mechanisms through cytokine receptors that share signal transducing receptor components. Curr Opin Immunol 1995;7:17–23.

    Google Scholar 

  123. Cosman D. The hematopoietin receptor superfamily. Cytokine 1993;5:95–106.

    Google Scholar 

  124. Hirano T, Matsuda T, Nakajima K. Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine family. Stem Cells 1994;12:262–77.

    Google Scholar 

  125. Miyajima A, Hara T, Kitamura T. Common subunits of cytokine receptors and the functional redundancy of cytokines. Trends Biochem Sci 1992;17:378–82.

    Google Scholar 

  126. Darnell J, Kerr I, Stark G. Jak-STAT Pathways and Transcriptional Activation in Response to IFNs and Other Extracellular Signaling Proteins. Science 1994;264:1415–21.

    Google Scholar 

  127. Kondo M, Takeshita T, Ishii N, et al. Sharing of the Interleukin-2 (IL-2) Receptor γ chain between receptors for IL-2 and IL-4. Science 1993;262:1847–77.

    Google Scholar 

  128. Noguchi M, Nakamura Y, Russell S, et al. Interleukin 2 Receptor γ Chain: A Functional Component of the Interleukin-7 Receptor. Science 1993;262:1877–80.

    Google Scholar 

  129. Noguchi M, Yi H, Rosenblatt H, et al. Interleukin-2 receptor g chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993;73:147–57.

    Google Scholar 

  130. Disanto J, Muller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc Natl Acad Sci 1995;92:377–81.

    Google Scholar 

  131. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: A current overview. Cell 1993;73:5–8.

    Google Scholar 

  132. Nakamura, Russell S, Mess S, et al. Heterodimerization of the IL-2 receptor b- and g-chain cytoplasmic domains is required for signalling. Nature 1994;369:330–3.

    Google Scholar 

  133. Ihle J, Witthuhn B, Quelle F, et al. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 1994;19:222–7.

    Google Scholar 

  134. Velazquez L, Fellous M, Start G, Pellegrini S. A protein tyrosine kinase in the interferonα/β signaling pathway. Cell 1992;70:313–22.

    Google Scholar 

  135. Watling D, Guschin D, Muller M, et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-g signal transduction pathway. Nature 1993;366:166–70.

    Google Scholar 

  136. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990;61:203–12.

    Google Scholar 

  137. Stahl N, Boulton T, Farruggella T, et al. Association and Activation of Jak-Tyk Kinases by CNTF-LIF-OSM-IL-6β Receptor Components. Science 1994;263:92–5.

    Google Scholar 

  138. Nicholson S, Oates A, Harpur A, Ziemiecki A, Wilks A, Layton J. Tyrosine Kinase JAK1 is associated with granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc Natl Acad Sci USA 1994;91:2985–8.

    Google Scholar 

  139. Witthun B, Quelle F, Silvennoinen O, et al. JAK2 Associates with the Erythropoietin Receptor and Is Tyrosine Phosphorylated and Activated following Stimulation with Erythropoietin. Cell 1993;74:227–36.

    Google Scholar 

  140. Argetsinger L, Campbell G, Yang X, et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 1993;74:237–44.

    Google Scholar 

  141. Witthun B, Silvennoinen O, Miura O, et al. Involvement of the Jak-3 Janus kinase in signaling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 1994;370:153–7.

    Google Scholar 

  142. Johnston J, Kawamura M, Kirken R, et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 1994;370:151–3.

    Google Scholar 

  143. Wilks A, Harpur A, Kurban R, Ralph S, Zurcher G, Ziemiecki A. Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinases. Mol Cell Biol 1991;11(4):2057–65.

    Google Scholar 

  144. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J. Binding of a high affinity phosphotyrosyl peptide to the src SH2 domain: Crystal structures of the complexed and peptidefree forms. Cell 1993:779–90.

  145. Musso T, Johnston JA, Linnekin D, et al. Regulation of JAK3 expression in human monocytes: phosphorylation in response to interleukins 2, 4 and 7. The J Exp Med 1995;181:1425–31.

    Google Scholar 

  146. Russell S, Johnston J, Noguchi M, et al. Interaction of IL-2Rβ and γc chains with Jak1 and Jak3: Implications for XSCID and XCID. Science 1994;266:1042–5.

    Google Scholar 

  147. Nowak R. ‘Bubble boy’ paradox resolved. Science 1993;262:1818.

    Google Scholar 

  148. Kawamura M, McVicar D, Johnston J, et al. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc Natl Acad Sci USA 1994;91:6374–8.

    Google Scholar 

  149. Taniguchi T. Cytokine signaling through nonreceptor tyrosine kinases. Science 1995;268:251–5.

    Google Scholar 

  150. Harpur A, Andres A, Ziemiecki A, Aston R, Wilks A. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 1992;7(7):1347–53.

    Google Scholar 

  151. Stahl N, Farruggella T, Boulton T, Zhong Z, Darnell J, Yancopoulos G. Choice of Stats and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 1995;267:1349–53.

    Google Scholar 

  152. Rothman P, Keider B, Azam M, et al. Cytokines and growth factors signal through tyrosine phosphorylation of a family of related transcription factors. Immunity 1994;1:457–68.

    Google Scholar 

  153. Hou J, Schindler U, Henzel W, Ho T, Brasseur M, McKnight S. An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994;265:1701–6.

    Google Scholar 

  154. Kohler I, Rieber EP. Allergy-associated I and Fc receptor II (CD23b) genes activated via binding of an interleukin-4-induced transcription factor to a novel responsive element. European J Immunol 1993;23:3066–71.

    Google Scholar 

  155. Rothman P, Li SC, Gorham B, Glimcher L, Alt R, et al. Identification of a conserved lipopolysaccharide-plus-interleukin-4-responsive element located at the promoter of germ line transcripts. Mol Cell Biol 1991;11:5551–61.

    Google Scholar 

  156. Tanner J, Chen W, Young R, Longmore G, Shaw A. The conserved Box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol Chem 1995;270(12):6523–30.

    Google Scholar 

  157. Beadling C, Guschin D, Witthuhn B, et al. Activation of JAK kinases and STAT proteins by interleukin-2 and interferonα, but not the T cell antigen receptor, in human T lymphocytes. European Mol Biol Organ J 1994;13(23):5605–15.

    Google Scholar 

  158. Carrera AC, Alexandrov K, Roberts TM. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proc Natl Acad Sci USA 1993;90:442–6.

    Google Scholar 

  159. Levitski A. Tyrophostins: tyrosine kinase blockers as a novel antiproliferative agents and dissectors of signal transduction. FASEB J 1992;6:3275–82.

    Google Scholar 

  160. Akiyama T, Ishida J, Nakagawa J, et al. Genistein: a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987;262:5592–5.

    Google Scholar 

  161. Uehara Y, Murakami Y, Suzukake-Tsuchiya K, et al. Effects of herbimycin derivatives on src oncogene in relation to antitumor activity. J Antibiot 1988;41:831–4.

    Google Scholar 

  162. Gazit A, Yaish P, Gilon C, Levizki A. Tyrophostins I: synthesis and biological activity of protein kinase inhibitors. Science 1989;32:2344–52.

    Google Scholar 

  163. Gazit A, Osherov N, Posner I, et al. Tyrophostins II: heterocyclic andα-substituted benzylide-nemalononitrile tyrophostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. J Med Chem 1991;34:1897–907.

    Google Scholar 

  164. O'Dell TJ, Kandell ER, Grant GV. Long term potentiation on the hipocampus is blocked by tyrosine inhibitors. Nature 1991;353:558–60.

    Google Scholar 

  165. Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science 1995;267:1782–88.

    Google Scholar 

  166. Fry DW, Kraker AJ, McMichael A, et al. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science 1994;265:1093–5.

    Google Scholar 

  167. Oliver JM, Burg DL, Wilson BS, McLaughlin JL, Geahlen RL. Inhibition of mast cell FcRI-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J Biol Chem 1994;269:29697–703.

    Google Scholar 

  168. Denny WA. Inhibitors of protein tyrosine kinses as anticancer drugs. Current Opin Invest Drugs 1993;2:835–41.

    Google Scholar 

  169. Burke TR. Protein-tyrosine kinase inhibitors. Drugs of the Future 1992;17:119–31.

    Google Scholar 

  170. Burke TR, Lim B, Marquez VE, et al. Bicyclic compounds as ring-constrained inhibitors of protein-tyrosine kinse p56lck. J Med Chem 1993;36:427.

    Google Scholar 

  171. Colamonici O, Yan H, Domanski P, et al. Direct binding to and tyrosine phosphorylation of theα subunit of the Type I interferon receptor by p135-tyk2 tyrosine kinase. Mol Cell Biol 1994;14:8133–42.

    Google Scholar 

  172. Gout I, Dhand R, Hiles ID, et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 1992;75:25–36.

    Google Scholar 

  173. Pawson T, Gish GD. SH2 and SH3 domains: from structure to function. Cell 1992;71:359–62.

    Google Scholar 

  174. Wange RL, Malek SN, Desiderio S, Sanelson LE. Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor ζ and CD3 from activated Jurkat T cells. J Biol Chem 1993;268:19797–801.

    Google Scholar 

  175. Gilmer T, Rodriguez M, Jordan S, et al. Peptide inhibitors of src SH3-SH2-phosphoprotein interactions. J Biol Chem 1994;269:31711–9.

    Google Scholar 

  176. Xu H, Littman DR. A kinase-dependent function of lck in potentiating antigen-specific T cell activation. Cell 1993;74:633–43.

    Google Scholar 

  177. Piccone E, Case RD, Domchek SM, et al. Biochem 1993;32:3197–202.

    Google Scholar 

  178. Wange RL, Isakov N, Burke Jr. TR, et al. F2(Pmp)2-TAMζ3, a novel competitive inhibitor of the binding of ZAP-70 to the T cell antigen receptor, blocks early T cell signaling. J Biol Chem 1995;270:944–8.

    Google Scholar 

  179. Heim M, Kerr I, Stark G, Darnell J. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 1995;267:1347–9.

    Google Scholar 

  180. Musacchio A, Gibson T, Lehto V-P, Saraste M. SH3—an abundant protein domain in search of a function. FEBS Lett 1992;307:55–61.

    Google Scholar 

  181. Mayer BJ, Baltimore D. Signaling through SH2 and SH3 domains. Trends Cell Biol 1993;3:8–13.

    Google Scholar 

  182. Bar-Sagi D, Rotin D, Batzer A, Mandiyan V, Schlessinger J. SH3 domains direct cellular localization of signaling molecules. Cell 1993;74:83–91.

    Google Scholar 

  183. Prasad KVS, Kappeller R, Janssen O, et al. Phosphatidylinositol (PI) 3-kinase and PI 4-kinase binding to the CD4-p56lck complex: the p56lck SH3 domain binds to PI 3-kinase but not to PI 4-kinase. Mol Cell Biol 1993;13:7708–17.

    Google Scholar 

  184. Prasad KV, Janssen R, Kapeller R, Raab M, Cantly LC, Rudd CE. Src-homology 3 domain in protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells. Proc Natl Acad Sci USA 1993;90:7366–70.

    Google Scholar 

  185. Liu X, Marangere LEM, Koch CA, Pawson T. The v-src SH3 domain binds pphosphatidylinositol 3′-kinase. Mol Cell Biol 1993;13:5225–32.

    Google Scholar 

  186. Flynn DC, Leu T, Reynolds AB, Parsons JT. Identification and sequence analysis of cDNAs encoding a 110-kilodalton actin filament-associated pp60src substrate. Mol Cell Biol 1992;13:7892–900.

    Google Scholar 

  187. Kanner SB, Reynolds AB, Wang H-CR. The SH2 and SH3 domains of pp60src direct stable association with tyrosine phosphorylated protein p130 and p110. EMBO Journal 1991;10:1689–98.

    Google Scholar 

  188. Seidel-Dugan C, Meyer BE, Thomas SM, Brugge JS. Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-src. Mol Cell Biol 1992;12:1835–45.

    Google Scholar 

  189. Wages DS, Keefer J, Rall TB, Weber MJ. Mutations in the SH3 domain of src oncogene decrease association of phosphatidylinositol 3′-kinase activity with pp60v—src and alter cellular morphology. J Virol 1992;66:1866–74.

    Google Scholar 

  190. Weng Z, Thomas SM, Rickles RJ, et al. Identification of Src, Fyn and Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol Cell Biol 1994;14:4509–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanke, J.H., Pollok, B.A. & Changelian, P.S. Role of tyrosine kinases in lymphocyte activation: Targets for drug intervention. Inflamm Res 44, 357–371 (1995). https://doi.org/10.1007/BF01797862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01797862

Key words

Navigation