Skip to main content
Log in

The mechanical hypothesis of excitation—contraction (EC) coupling in skeletal muscle

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The mechanism of transmission in skeletal muscle EC coupling is still an open question. There is some indirect evidence in favour of the mechanical coupling hypothesis, deriving mostly from consideration of the structure of the Ca2+ release channel protein. A new functional approach is proposed, that consists in comparing the properties of the complete system — EC coupling in a skeletal muscle fibre — with those of the EC coupling molecules in bilayers. In this approach, those properties of the whole system that are not traceable to its constitutive molecules, are ascribed to the physiological interaction, and are expected to yield new information on the nature of this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affolter, H. &Coronado, R. (1985) Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules.Biophys. J. 48, 341–7.

    PubMed  Google Scholar 

  • Anderson, K., Grunwald, R., EL-Hashem, A., Sealock, R. &Meissner, G. (1990) High affinity ryanodine and PN200-110 binding to rabbit skeletal muscle triads.Biophys. J. 57, 171a.

    Google Scholar 

  • Armstrong, C. M., Bezanilla, F. &Horowicz, P. (1972) Twitches in the presence of ethylene glycol gis (β-aminoethylether)-N,N1-tetraacetic acid.Biochim. Biophys. Acta 267, 605–8.

    PubMed  Google Scholar 

  • Berwe, D., Gottschalk, G. &Lüttgau, H. C. (1987) The effects of the Ca2+-antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscles of the frog.J. Physiol (Lond.) 385, 693–708.

    Google Scholar 

  • Block, B. A., Imagawa, T., Campbell, K. P. &Franzini-Armstrong, C. (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.J. Cell Biol. 107, 2587–600.

    PubMed  Google Scholar 

  • Brandt, N. R., Caswell, A. H., Wen, S. R. &Talvenheimo, J. A. (1990) Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads.J. Membr. Biol. 113, 237–51.

    PubMed  Google Scholar 

  • Brum, G., Fitts, R., Pizarro, G. &Ríos, E. (1988a) Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling.J. Physiol. (Lond.) 398, 475–505.

    Google Scholar 

  • Brum, G., Ríos, E. &Stefani, E. (1988b) Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres. (With an appendix by G. Brum, E. Ríbs and M. F. Schneider).J. Physiol. (Lond.) 398, 441–73.

    Google Scholar 

  • Cadwell, J. J. S. &Caswell, A. H. (1982) Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle.J. Cell Biol. 93, 543–50.

    PubMed  Google Scholar 

  • Chandler, W. K., Rakowski, R. F. &Schneider, M. F. (1976) Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle.J. Physiol. (Lond.) 254, 285–316.

    Google Scholar 

  • Csernoch, L., Kovacs, L. &Szücs, G. (1987) Perchlorate and the relationship between charge movement and contractile activation in frog skeletal muscle fibres.J. Physiol. (Lond.) 390, 213–27.

    Google Scholar 

  • Csernoch, L., Uribe, I., Rodriguez, M., Pizarro, G. &Rios, E. (1989) and Ca release flux in skeletal muscle fibers.Biophys. J. 55, 88a.

    Google Scholar 

  • Csernoch, L., Pizarro, G., Uribe, I., Rodriguez, M. &Rios, E. (1991) Interfering with calcium release suppresses, Iγ, the delayed component of intramembrane change movement in skeletal muscle.J. Gen. Physiol., (in press).

  • Donaldson, S. K. (1989) Inactivated state rather than transverse tubule depolarization increases peeled skeletal muscle fiber sensitivity to inositol trisphosphate.Biophys. J. 55, 236a.

    Google Scholar 

  • Donaldson, S. K., Goldberg, N. D., Walseth, T. F. &Heutteman, D. A. (1988) Voltage dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers.Proc. Nain. Acad. Sci. (USA) 85, 5749–53.

    Google Scholar 

  • Etter, E. F. (1990) The effect of phenylglyoxal on contraction and intramembrane charge movement in frog skeletal muscle.J. Physiol. (Lond.) 421, 441–62.

    Google Scholar 

  • Feldmeyer, D. &Lüttgau, H. C. (1988) The effect of perchlorate on Ca currents and mechanical force in skeletal muscle fibres.Pflügers Arch. 411, R190.

    Google Scholar 

  • Fleischer, S. &Inui, M. (1989) Biochemistry and biophysics of excitation- contraction coupling.Ann. Rev. Biophys. Biphys. Chem. 18, 333–64.

    Google Scholar 

  • Flockerzi, V., Oeken, H.-J., Hoffmann, F., Pelzer, D., Cavalie, A. &Trautwein, W. (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel.Nature 323, 66–8.

    Google Scholar 

  • Frank, G. B. (1958) Inward movement of calcium as a link between electrical and mechanical events in contraction.Nature 182, 1800–1.

    PubMed  Google Scholar 

  • Frank, G. B. (1980) The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle.Biochem. Pharmacol. 29, 2399–406.

    PubMed  Google Scholar 

  • Franzini-Armstrong, C. (1970) Studies of the triad. I. Structure of the junction in frog twitch fibres.J. Cell. Biol. 47, 488–99.

    Google Scholar 

  • Garcia, J. &Stefani, E. (1990) Calcium transients in rat skeletal muscle: evidence for Ca2+ regulated Ca2+ release process.Biophys. J. 57, 400a.

    Google Scholar 

  • Garcia, J., Pizarro, G., Rios, E. &Stefani, E. (1991) Effect of the calcium buffer EGTA on the delayed charge of skeletal muscle.J. Gen. Physiol., (in press).

  • Gomolla, M., Gottschalk, &Lüttgau, H. C. (1983) Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres.J. Physiol. (Lond.) 343, 197–214.

    Google Scholar 

  • Hidalgo, C. &Jaimovich, E. (1989) Inositol trisphophate and excitation-contraction coupling in skeletal muscle.J. Bioenerg. Biomem. 21, 267–82.

    Google Scholar 

  • Hollingworth, S. &Marshall, M. W. (1981) A comparative study of charge movement in rat and frog skeletal muscle fibres.J. Physiol. (Lond.) 321, 583–602.

    Google Scholar 

  • Hui, C. S. &Chandler, W. K. (1990) Intramembranous charge movement in frog cut twitch fibers mounted in a double Vaseline-gap chamber.J. Gen. Physiol. 96, 257–98.

    Google Scholar 

  • Huang, C. L. H. (1989) Intramembrane charge movements in skeletal muscle.Physiol. Rev. 68, 1197–247.

    Google Scholar 

  • Huang, C. L. H. (1990) Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle.J. Gen. Physiol. 96, 535–58.

    PubMed  Google Scholar 

  • Kwok, W. M. &Best, P. M. (1990) Ryanodine sensitivity and multiple conductance states of the Ca release channel from native SR membrane.Biophys. J. 57, 168a.

    Google Scholar 

  • Lai, F. A. &Meissner, G. (1989).J. Bioenerg. Biomembr. 21, 227–46.

    PubMed  Google Scholar 

  • Liu, Q. Y., Lai, A., Rousseau, E., Jones, R. V. &Meissner, G. (1989) Multiple conductance states of the purified calcium release channel complex from skeletal sarcoplasmic reticulum.Biophys. J. 55, 415–24.

    PubMed  Google Scholar 

  • Lüttgau, H. C., Gottschalk, G., Kovacs, L. &Fuxreiter, M. (1983) How perchlorate improves excitation-contraction coupling in skeletal muscle fibres.Biophys. J. 43, 247–9.

    PubMed  Google Scholar 

  • Ma, J., Mundiña-Weilenmann, C., Hosey, M. M. &Rios, E. (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. I. kinetics and voltage dependence of gating.Biophys. J., (submitted).

  • Mejía-Alvarez, R., Fill, M. &Stefani, E. (1990) Voltagedependent inactivation of T-tubular skeletal calcium channels in planar lipid bilayers.J. Gen. Physiol. (in press).

  • Melzer, W., Schneider, M. F., Simon, B. &Szücs, G. (1986) Intramembrane charge movement and Ca release in frog skeletal muscle.J. Physiol (Lond.) 373, 481–511.

    Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S. &Numa, S. (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel.Nature 340, 230–33.

    PubMed  Google Scholar 

  • Nabauer, M., Callewaert, G., Cleeman, L. &Morad, M. (1989) Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes.Science 244, 800–3.

    PubMed  Google Scholar 

  • Nosek, T. M., Guo, N., Ginsburg, J. M. &Kolbeck, R. C. (1990) Inositol (1,4,5)triphsophate (IP3) within diaphragm muscle increases upon depolarization.Biphys. J. 57, 401a.

    Google Scholar 

  • Palade, P., Brunder, D., Dettbarn, C. &Stein, P. (1990) A pharmacological approach to the physiological mechanism of excitation-contraction coupling. InTransduction in Biological Systems (edited byHildago, C., Bacigalupo, J., Jaimovich, E. &Vergara, J.) pp. 401–14, New York and London: Plenum Press.

    Google Scholar 

  • Pelzer, D., Cavalie, A., Flockerzi, V., Hoffmann, F. &Trautwein, W. (1988) Reconstitution of solubilized and purified dihydropyridine receptor from skeletal muscle microsomes as two single calcium channel conductances with different functional properties. in:The Calcium Channel (edited byMorad, M. et al pp. 217–30. Berlin: Springer-Verlag.

    Google Scholar 

  • Pizarro, G., Csernoch, L. &Rios, E. (1990a) An inward phase in intramembrane charge movement during a depolarizing pulse.Biophys. J. 57, 341a.

    Google Scholar 

  • Pizarro, G., Fitts, R., Uribe, I. &Rios, E. (1989) The voltage sensor of excitation contraction coupling in skeletal muscle. Ion dependence and selectivity.J. Gen. Physiol. 94, 405–28.

    Google Scholar 

  • Pizarro, G., Rodriguez, M., Csernoch, L. &Rios, E. (1990) Positive feedback in skeletal muscle EC coupling.Biophys. J. 57, 401a.

    Google Scholar 

  • Pizarro, G., Csernoch, L., Uribe, I., Rodriguez, M. &Rios, E. (1991) The relationship between Qγ and Ca release from the sarcoplasmic reticulum in skeletal muscle.J. Gen. Physiol., (in press).

  • Rios, E. (1984) Off gating of calcium release in skeletal muscle.J. Gen. Physiol. 84, 40a.

    Google Scholar 

  • Rios, E. &Brum, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle.Nature 325, 717–20.

    PubMed  Google Scholar 

  • Rios, E. &Pizarro, G. (1991) The voltage sensor of excitation-contraction coupling in skeletal muscle.Physiological Reviews (in press).

  • Rios, E., Shirokov, R., Levis, R., Gonzalez, A., Stavrovsky, I., MA, J., Mundiña-Weilenmann, C. &Hosey, M. M. (1991) Different effects of perchlorate on skeletal muscle EC coupling, cardiac Ca2+ gating currents and gating of DHP receptors in bilayers (abstract).Biophys. J. (in press).

  • Röhrkasten, A., Meyer, H. E., Nastainczyk, W., Sieber, M. &Hofmann, F. (1988) cAMP-dependent protein kinase rapidly phosphorylates Serine-687 of the skeletal muscle receptor for Ca channel blockers.J. Biol. Chem. 263, 1–5.

    PubMed  Google Scholar 

  • Rojas, C. &Hidalgo, C. (1990) Inositol trisphosphate binds to heavy sarcoplasmic reticulum membranes isolated from frog skeletal muscle.Biophys. J. 57, 342a.

    Google Scholar 

  • Rosenburg, R. L., Hess, P., Reeves, J., Smilowitz, H. &Tsien, R. W. (1986) Calcium channels in planar lipid bilayers: new insights into the mechanism of permeation and gating.Science 238, 1564–6.

    Google Scholar 

  • Schneider, M. F. &Chandler, W. K. (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling.Nature 242, 244–6.

    PubMed  Google Scholar 

  • Simon, B. J., Klein, M. G. &Schneider, M. F. (1989) Caffeine slows turn-off of calcium release in voltage clamped skeletal muscle fibers.Biophys. J. 55, 793–7.

    PubMed  Google Scholar 

  • Smith, J. S., Mckenna, E. J., Ma, J., Vilven, J., Vaghy, P. L., Schwartz, A. &Coronado, R. (1987) Calcium channel activity in a purified dihydropyridine-receptor preparation of skeletal muscle.Biochem. 26, 7182–88.

    Google Scholar 

  • Smith, J. S., Imagawa, T., Ma, J., Fill, M., Campbell, K. P. &Coronado, R. (1988) Purified ryanodine receptor from rabbit skeletal muscle is the calcium release channel of sarcoplasmic reticulum.J. Gen. Physiol. 92, 1–26.

    PubMed  Google Scholar 

  • Szücs, G., Csernoch, L., Magyar, J. &Kovacs, L. (1991) Contraction threshold and the ‘hump’ component of charge movement in frog skeletal muscle.J. Gen. Physiol., (in press).

  • Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T. &Numa, S. (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor.Nature 339, 439–45.

    PubMed  Google Scholar 

  • Talvenheimo, J. A., Worley, J. F. &Nelson, M. T. (1987) Heterogeneity of calcium channels from purified dihydropyridine receptor preparation.Biophys. J. 52, 891–9.

    PubMed  Google Scholar 

  • Tanabe, T., Mikami, A., Numa, S. &Beam, K. G. (1990a) Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA.Nature 344, 451–3.

    PubMed  Google Scholar 

  • Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T. &Numa, S. (1990b) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling.Nature 346, 567–9.

    PubMed  Google Scholar 

  • Tanabe, T., Beam, K. G., Powerll, J. A. &Numa, S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA.Nature 336, 134–9.

    PubMed  Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. &Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle.Nature 328, 313–18.

    PubMed  Google Scholar 

  • Vergara, J. &Delay, M. (1986) A transmission delay and the effect of temperature at the triadic junction of skeletal muscle.Proc. Roy. Soc. Lond. B229, 97–110.

    Google Scholar 

  • Vergara, J., Tsien, R. Y. &Delay, M. (1985) Inositol [1,4,5]-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle.Proc. Natn. Acad. Sci. (USA) 82, 635–6.

    Google Scholar 

  • Volpe, P., Salviati, G., Di Virgilio, F. &Pozzan, T. (1985) Inositol [l,4,5]-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle.Nature 316, 347–9.

    PubMed  Google Scholar 

  • Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M. &Fleischer, S. (1989) Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum.Nature 338, 167–70.

    PubMed  Google Scholar 

  • Zhu, P. H., Parker, I. &Miledi, R. (1986) Minimal latency of Ca2+ release in frog twitch muscle fibres.Proc. Roy. Soc. Lond. B229, 39–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ríos, E., Ma, J. & González, A. The mechanical hypothesis of excitation—contraction (EC) coupling in skeletal muscle. J Muscle Res Cell Motil 12, 127–135 (1991). https://doi.org/10.1007/BF01774031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01774031

Keywords

Navigation