Skip to main content
Log in

Membrane-bound Ca2+ distribution visualized by chlorotetracycline fluorescence during morphogenesis of soredia in a lichen

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

In the lichenParmelia caperata (L.) Ach. the distribution pattern of membrane-bound Ca2+ is investigated in the symbionts by chlorotetracycline (CTC)-induced fluorescence during the development of propagative structures, the soredia. The results demonstrate that Ca2+ accumulation in the alga and the fungus is associated with this morphogenetic process; particularly, polarized hyphal growth involves a tip-to-base Ca2+ gradient.

CTC fluorescence distribution is coincident with that of cholinesterase (ChE) activity during morphogenesis of soredia. A comparison is suggested with ‘embryonic ChE’ of animal cells, where developmental events are regulated by a cholinergic mechanism that also modulates Ca2+ levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACHENBACH, F., ACHENBACH, U. & KESSLER, D. (1984) Calcium binding sites in plasmodia ofPhysarum polycephalum as revealed by the pyroantimoniate technique.J. Histochem. Cytochem. 32, 1177–84.

    Google Scholar 

  • BERRIDGE, M. J. & IRVINE, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature 312, 315–21.

    Google Scholar 

  • BRAWLEY, S. H. & ROBINSON, K. R. (1985) Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis.J. Cell Biol. 100, 1173–84.

    Google Scholar 

  • BROWNLEE, C. & WOOD, J. W. (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells ofFucus serratus.Nature 320, 624–6.

    Google Scholar 

  • CASWELL, A. H. (1979) Methods for measuring intracellular calcium.Int. Rev. Cytol. 56, 145–81.

    Google Scholar 

  • CHEN, T.-H. & JAFFE, L. F. (1979) Forced clacium entry and polarized growth ofFunaria spores.Planta 144, 101–6.

    Google Scholar 

  • DETTBARN, W. D. (1962) Acetylcholinesterase activity inNitella.Nature 194, 1175–6.

    Google Scholar 

  • DREWS, U. (1975) Cholinesterase in embryonic development.Prog. Histochem. Cytochem. 7, 1–52.

    Google Scholar 

  • EVANS, M. L. (1972) Promotion of cell elongation inAvena coleoptiles by acetylcholine.Plant Physiol. 50, 414–16.

    Google Scholar 

  • GILROY, S., BLOWERS, D. P. & TREWAVAS, A. J. (1987) Calcium: a regulation system emerges in plant cells.Development 100, 181–4.

    Google Scholar 

  • GOODWIN, B. C. & PATEROMICHELAKIS, S. (1979) The role of electrical fields, ions, and the cortex in the morphogenesis ofAcetabularia.Planta 145, 427–35.

    Google Scholar 

  • GOODWIN, B. C., SKELTON, J. L. & KIRK-BELL, S. M. (1983) Control of regeneration and morphogenesis by divalent cations inAcetabularia mediterranea.Planta 157, 1–7.

    Google Scholar 

  • HOITINK, A. W. & DIJK, G. V. (1965) The influence of neurohumoral transmitter substances on protoplasmic streaming in the MyxomycetePhysarella oblonga.J. Cell Physiol. 67, 133–40.

    Google Scholar 

  • HOSHINO, T. (1983) Effects of acetylcholine on the growth of theVigna seedlings.Plant & Cell Physiol. 24, 551–6.

    Google Scholar 

  • JAFFE, M. J. (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor acetylcholine.Plant Physiol. 46, 768–77.

    Google Scholar 

  • JAFFE, M. J. (1972) Acetylcholine as a native metabolic regulator of phytochrome-mediated processes in bean roots. InRecent Advances in Phytochemistry. Vol. 5, (edited by RUNECKLES, V. C. & TSO, T. C.) pp. 81–104. New York, Academic Press.

    Google Scholar 

  • JAFFE, L. A., WEISENSEEL, M. H. & JAFFE, L. F. (1975) Calcium accumulation within the growing tips of pollen tubes.J. Cell Biol. 67, 488–92.

    Google Scholar 

  • KAUPPI, M. (1984) Fluorescence microscopy for the examination of different tissues in lichens and pollution effects on the algal cell layer. InAbstracts of the VIIth International Congress of Histochemistry and Cytochemistry (edited by PANULA, P., PÄIVÄRINTA, H. & SOINILA, S.) p. 187. Helsinki.

  • KEITH, C. H., RATAN, R., MAXFIELD, F. R., BAJER, A. & SHELANSKI, M. L. (1985) Local cytoplasmic calcium gradients in living mitotic cells.Nature 316, 848–50.

    Google Scholar 

  • KROPF, D. L., LUPA, M. D. A., CALDWELL, J. H. & HAROLD, F. M. (1983) Cell polarity: endogenous ion currents precede and predict branching in the water moldAchlya.Science 220, 1385–7.

    Google Scholar 

  • KROPF, D. L., CALDWELL, J. H., GOW, N. A. R. & HAROLD, F. M. (1984) Transcellular ion currents in the water moldAchlya. Amino acid proton symport as a mechanism of current entry.J. Cell Biol. 99, 486–96.

    Google Scholar 

  • LALLEMANT, R. (1972) Etude de la formation des sorédies chez le DiscolichenBuellia canescens (Dicks.) D. Notrs.Bull. Soc. Bot. Fr. 119, 463–76.

    Google Scholar 

  • LEES, G. L. & THOMPSON, J. E. (1975) The effects of germination on the subcellular distribution of cholinesterase in cotyledons ofPhaseolus vulgaris.Physiol. Plant. 34, 230–7.

    Google Scholar 

  • MCNALLY, J. G., COWAN, J. D. & SWIFT, H. (1983) The effects of the ionophore A23187 on pattern formation in the algaMicrasterias.Dev. Biol. 97, 137–45.

    Google Scholar 

  • MEINDL, U. (1982) Local accumulation of membrane-associated calcium according to cell pattern formation inMicrasterias denticulata, visualized by chlorotetracycline fluorescence.Protoplasma 110, 143–6.

    Google Scholar 

  • MIURA, G. A. & SHIH, T.-M. (1984) Cholinergic constituents in plants: characterization and distribution of acetylcholine and choline.Physiol. Plant. 61, 417–21.

    Google Scholar 

  • MUKHERJEE, I. (1980) The effect of acetylcholine on hypocotyl elongation in soybean.Plant & Cell Physiol. 21, 1657–60.

    Google Scholar 

  • NAKAJIMA, H. & HATANO, S. (1962) Acetylcholinesterase in the plasmodium of the myxomycete,Physarum polycephalum.J. Cell. Comp. Physiol. 59, 259–64.

    Google Scholar 

  • OETTLING, G., SCHMIDT, H. & DREWS, U. (1985) The muscarinic receptor of chick embryo cells: correlation between ligand binding and calcium mobilization.J. Cell Biol. 100, 1073–81.

    Google Scholar 

  • PICTON, J. M. & STEER, M. W. (1982) A model for the mechanism of tip extension in pollen tubes.J. Theor. Biol. 98, 15–20.

    Google Scholar 

  • RAINERI, M. & MODENESI, P. (1986) Preliminary evidence for a cholinergic-like system in lichen morphogenesis.Histochem J. 18, 647–57.

    Google Scholar 

  • REISS, H.-D. & HERTH, W. (1978) Visualization of the Ca2+ gradient in growing pollen tubes ofLilium longiflorum with chlorotetracycline fluorescence.Protoplasma 97, 373–77.

    Google Scholar 

  • REISS, H.-D. & HERTH, W. (1979) Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence.Planta 146, 615–21.

    Google Scholar 

  • REISS, H.-D. & NOBILING, R. (1986) Quin-2 fluorescence in lily pollen tubes: distribution of free cytoplasmic calcium.Protoplasma 131, 244–6.

    Google Scholar 

  • RIOV, J. & JAFFE, M. J. (1973) A cholinesterase from bean roots and its inhibition by plant growth retardants.Experientia 29, 264–5.

    Google Scholar 

  • ROBINSON, K. R. & JAFFE, L. F. (1975) Polarizing fucoid eggs drive a calcium current through themselves.Science 187, 70–2.

    Google Scholar 

  • ROBINSON, K. R. & CONE, R. (1980) Polarization of fucoid eggs by a calcium ionophore gradient.Science 207, 77–8.

    Google Scholar 

  • SCHMIDT, H., OETTLING, G., KAUFENSTEIN, T., HARTUNG, G. & DREWS, U. (1984) Intracellular calcium mobilization on stimulation of the muscarinic cholinergic receptor in chick limb bud cells.Roux's Arch. Dev. Biol. 194, 44–9.

    Google Scholar 

  • TREWAVAS, A. J., SEXTON, R. & KELLY, P. (1984) Polarity, calcium and abscission: molecular bases for developmental plasticity in plants.J. Embryol. Exp. Morph. 83 Suppl., 179–95.

    Google Scholar 

  • WEISENSEEL, M. H., NUCCITELLI, R. & JAFFE, L. F. (1975) Large electrical currents traverse growing pollen tubes.J. Cell Biol. 66, 556–67.

    Google Scholar 

  • WICK, S. M. & HEPLER, P. K. (1980) Localization of Ca2+-containing antimonate precipitates during mitosis.J. Cell Biol. 86, 500–13.

    Google Scholar 

  • WOLNIAK, S. M., HEPLER, P. K. & JACKSON, W. T. (1980) Detection of the membrane-calcium distribution during mitosis inHaemanthus endosperm with chlorotetracycline.J. Cell Biol. 87, 23–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raineri, M., Modenesi, P. Membrane-bound Ca2+ distribution visualized by chlorotetracycline fluorescence during morphogenesis of soredia in a lichen. Histochem J 20, 81–87 (1988). https://doi.org/10.1007/BF01746608

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01746608

Keywords

Navigation