Skip to main content
Log in

Relaxation from rigor by photolysis of caged-ATP in different types of muscle fibres fromXenopus laevis

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Using chemically skinned fast and slow fibres from the iliofibularis muscle ofXenopus laevis, we measured the force changes following laser pulse photolysis of caged-ATP at 4° C in the presence and absence of added calcium. The time course of the early force change in the absence of calcium was used to derive an apparent second order rate constant for crossbridge detachment. These values were compared with previous model-dependent estimates stemming from force-velocity experiments. For fast muscle fibres, the value obtained here was equal to that obtained in the previous study, namely 4×105 m −1 s −1. For slow fibres, the value obtained from caged-ATP experiments was 1.5×104 m −1 s −1 whereas the value from force-velocity experiments was 20 times greater (2.9×105 m −1 s −1). The different values for slow fibres indicate that the model assumptions inherent in the analysis of the force-velocity experiments may not hold for all muscle types. For example, the process of dissociation of the actomyosin complex of slow myosins may be different from that of fast myosins. All observed or calculated kinetic transitions for the crossbridge cycle were slower in slow muscle fibres than in fast muscle fibres. These include the forward and backward rate constants for crossbridge attachment which were lower by a factor of three in slow fibres compared with fast fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barabas, K. &Keszthelyi, L. (1984) Temperature dependence of ATP release from ‘caged’ ATP.Acta Biochim. Biophys. Acad. Sci. Hung. 19, 305–9.

    PubMed  Google Scholar 

  • Barany, M. (1967) ATPase activity of myosin correlated with speed of shortening.J. Gen. Physiol. 50, 197–218.

    PubMed  Google Scholar 

  • Barsotti, R. J. &Ferenczi, M. A. (1988) Kinetics of ATP hydrolysis and tension production in skinned cardiac muscle of the guinea pig.J. Biol. Chem. 263, 16750–6.

    PubMed  Google Scholar 

  • Bowater, R., Webb, M. R. &Ferenczi, M. A. (1989) Measurement of the reversibility of ATP binding to myosin in calcium-activated skinned fibers from rabbit skeletal muscle.J. Biol. Chem. 264, 7193–201.

    PubMed  Google Scholar 

  • Bremel, R. D. &Weber, A. (1972) Cooperation with actin filament in vertebrate skeletal muscle.Nature New Biol. 238, 97–101.

    PubMed  Google Scholar 

  • Dantzig, J. A., Goldman, Y. E., Luttmann, M. L., Trentham, D. R. &Woodward, S. K. A. (1989) Binding of caged ATP diastereoisomers to rigor cross-bridges in glycerolextracted fibres of rabbit psoas muscle.J. Physiol. 418, 61P.

    Google Scholar 

  • Eisenberg, E., Hill, T. L. &Chen, Y. (1980) Cross-bridge model of muscle contraction.Biophys. J. 29, 195–227.

    PubMed  Google Scholar 

  • Elzinga, G., Lännergren, J. &Stienen, G. J. M. (1987) Stable maintenance heat rate and contractile properties of different single muscle fibres fromXenopus laevis at 20° C.J. Physiol. 393, 399–412.

    PubMed  Google Scholar 

  • Ferenczi, M. A. (1986) Phosphate burst in permeable muscle fibers of the rabbit.Biophys. J. 50, 471–7.

    PubMed  Google Scholar 

  • Ferenczi, M. A. &Stienen, G. J. M. (1988) Force relaxation in skinned fast fibres of the iliofibularis muscle ofXenopus laevis by photolysis of caged ATP.J. Physiol. 398, 73P.

    Google Scholar 

  • Ferenczi, M. A., Goldman, Y. E. &Simmons, R. M. (1984a) The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres fromRana temporaria.J. Physiol. 350, 519–43.

    PubMed  Google Scholar 

  • Ferenczi, M. A., Homsher, E. &Trentham, D. R. (1984b) The kinetics of magnesium adenosine triphosphate cleavage in skinned muscle fibres of the rabbit.J. Physiol. 352, 575–99.

    PubMed  Google Scholar 

  • Godt, R. E. &Lindley, B. D. (1982) Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog.J. Gen. Physiol. 80, 279–97.

    PubMed  Google Scholar 

  • Goldman, Y. E. &Simmons, R. M. (1984) Control of sarcomere length in skinned muscle fibres ofRana temporaria during mechanical transients.J. Physiol. 350, 497–518.

    PubMed  Google Scholar 

  • Goldman, Y. E., Hibberd, M. G., McCray, J. A. &Trentham, D. R. (1982) Relaxation of muscle fibres by photolysis of caged-ATP.Nature 300, 701–5.

    PubMed  Google Scholar 

  • Goldman, Y. E., Hibberd, M. G. &Trentham, D. R. (1984a) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5′-triphosphate.J. Physiol. 354, 577–604.

    PubMed  Google Scholar 

  • Goldman, Y. E., Hibberd, M. G. &Trentham, D. R. (1984b) Initiation of active contraction by photogeneration of adenosine-5′-triphosphate in rabbit psoas muscle fibres.J. Physiol. 354, 605–24.

    PubMed  Google Scholar 

  • Hibberd, M. &Trentham, D. R. (1986) Relationships between chemical and mechanical events during muscular contraction.Ann. Rev. Biophys. Chem. 15, 119–61.

    Google Scholar 

  • Huxley, A. F. (1957) Muscle structure and theories of contraction.Prog. Biophys. Chem. 7, 255–318.

    Google Scholar 

  • Huxley, A. F. &Simmons, R. M. (1971) Proposed mechanism of force generation in striated muscle.Nature 233, 533–8.

    PubMed  Google Scholar 

  • Julian, F. J., Moss, R. L. &Waller, G. S. (1981) Mechanical properties and myosin light chain composition of skinned muscle fibres from adult and new-born rabbits.J. Physiol. 311, 201–18.

    PubMed  Google Scholar 

  • Kawai, M. &Schachat, F. H. (1984) Differences in the transient response of fast and slow skeletal muscle fibers. Correlation between complex modulus and myosin light chains.Biophys. J. 45, 1145–51.

    PubMed  Google Scholar 

  • Laarse, W. J. Van Der, Diegenbach, P. C. &Hemminga, M. A. (1986) Calcium-stimulated myofibrillar ATPase activity correlates with shortening velocity of muscle fibers inXenopus laevis.Histochem. J. 18, 487–96.

    PubMed  Google Scholar 

  • Lännergren, J. (1979) An intermediate type of muscle fibre inXenopus laevis.Nature 279, 254–6.

    PubMed  Google Scholar 

  • Lännergren, J. &Smith, R. S. (1966) Types of muscle fibres in toad skeletal muscle.Acta Physiol. Scand. 68, 263–74.

    Google Scholar 

  • Lymn, R. W. &Taylor, E. W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10, 4617–24.

    PubMed  Google Scholar 

  • Marquardt, D. W. (1963) Algorithm for least squares estimation of nonlinear parameters.J. Soc. Appl. Math. 11, 431–41.

    Google Scholar 

  • Marston, S. A. &Taylor, E. W. (1980) Comparison of the myosin and actomyosin ATPase mechanism of four types of vertebrate muscle.J. Mol. Biol. 139, 573–600.

    PubMed  Google Scholar 

  • Poole, K. J. V., Rapp, G., Maeda, Y. &Goody, R. S. (1988) The time course of changes in the equatorial diffraction patterns from different muscle types on photolysis of caged-ATP.Adv. Exp. Med. Biol. 226, 391–404.

    PubMed  Google Scholar 

  • Rapp, G., Poole, K. J. V., Maeda, Y., Güth, K., Hendrix, J. &Goody, R. S. (1986) Time-resolved structural studies on insect flight muscle after photolysis of caged-ATP.Biophys. J. 50, 993–7.

    Google Scholar 

  • Rosenfeld, S. S. &Taylor, E. W. (1984) The ATPase mechanism of skeletal muscle and smooth muscle acto-subfragment 1.J. Biol. Chem. 259, 11908–19.

    PubMed  Google Scholar 

  • Sellavold, O. F. M., Jynge, P. &Aarstad, K. (1986) High performance liquid chromatography:a rapid isocratic method for determination of creatine compounds and adenine nucleotide in myocardial tissue.J. Mol. Cell Cardiol. 18, 517–27.

    PubMed  Google Scholar 

  • Stein, L. A., Green, L. E., Chock, P. B. &Eisenberg, E. (1985) Ratelimiting step in the actomyosin adenosinetriphosphatase cycle:studies with myosin subfragment 1 cross-linked to actin.Biochemistry 24, 1357–63.

    PubMed  Google Scholar 

  • Stienen, G. J. M. &Roosemalen, M. C. M. (1988) Different crossbridge dissociation rates in skinned fibers of rabbit soleus and psoas muscles.Biophys. J. 53, 193a.

    Google Scholar 

  • Stienen, G. J. M., Van Der Laarse, W. J., Diegenbach, P. C. &Elzinga, G. (1987) Relation between force and calcium ion concentration in different fibre types of the iliofibularis muscle ofXenopus laevis.Pflügers Arch. Eur. J. Physiol. 408, 63–7.

    Google Scholar 

  • Stienen, G. J. M., Van Der Laarse, W. J. &Elzinga, G. (1988) Dependency of the force-velocity relationship on MgATP in different types of muscle fibers fromXenopus laevis.Biophys. J. 53, 849–55.

    PubMed  Google Scholar 

  • Taylor, E. W. (1979) Mechanism of actomyosin ATPase and the problem of muscle contraction.CRC Crit. Rev. Biochem. 6, 103–64.

    PubMed  Google Scholar 

  • Walker, J. W., Reid, G. P., McCray, J. A. &Trentham, D. R. (1988) Photolabile 1-(2-nitrophenyl)ethyl phosphate esters of adenine nucleotide analogues: synthesis and mechanism of photolysis.J. Am. Chem. Soc. 110, 7170–7.

    Google Scholar 

  • Walker, J. W., Reid, G. P. &Trentham, D. R. (1989) Synthesis and properties of caged nucleotides.Meth. Enzymol. 172, 288–301.

    PubMed  Google Scholar 

  • White, H. D. (1985) Kinetics of tryptophan fluorescence in myofibrils during ATP hydrolysis.J. Biol. Chem. 260, 982–6.

    PubMed  Google Scholar 

  • Yamakawa, M., Ranatunga, K. W. &Goldman, Y. E. (1986) Relaxation and initiation of active contraction of rabbit soleus fibers by caged ATP photolysis.Biophys. J. 49, 10a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stienen, G.J.M., Ferenczi, M.A. Relaxation from rigor by photolysis of caged-ATP in different types of muscle fibres fromXenopus laevis . J Muscle Res Cell Motil 12, 507–516 (1991). https://doi.org/10.1007/BF01738439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738439

Keywords

Navigation